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RESUMEN

A través del andlisis de la evolucién de la deformacion
superficial observada experimentalmente en vigas de
hormigdn armado al entrar en carga, se constata que di-
cho proceso debe considerarse estocastico. En este tra-
bajo se estudia la utilizacién de cadenas de Markov para
modelizar la evolucién estocastica de la deformacion de
vigas flexotraccionadas. Se propone, para establecer el
estado de deformacién de estas, un modelo con distribu-
cién gaussiana tipo cadena de Markov homogénea de
dos niveles (BLHGMC por sus siglas en inglés), cuyo em-
pleo resulta sencillo y practico. Se comprueba la utilidad
del modelo BLHGMC para prever el comportamiento de
estos elementos, lo que determina a su vez una mayor
racionalidad a la hora de su calculo y disefio.

Palabras clave: cadena de Markov; hormigdn reforzado;
modelado estocastico; tension.

SUMMARY

From the analysis of experimentally observed variations
in surface strains with loading in reinforced concrete
beams, it is noted that there is a need to consider the
evolution of strains (with loading) as a stochastic
process. Use of Markov Chains for modeling stochastic
evolution of strains with loading in reinforced concrete
flexural beams is studied in this paper. A simple, yet
practically useful, bi-level homogeneous Gaussian
Markov Chain (BLHGMC) model is proposed for
determining the state of strain in reinforced concrete
beams. The BLHGMC model will be useful for predicting
behavior/response of reinforced concrete beams leading
to more rational design.

Keywords: Markov chain; reinforced concrete;
stochastic modeling; strain.

&) CSIR-Structural Engineering Research Centre, CSIR Campus, Taramani (Chennai, India).

&% Indian Institute of Science (Bangalore, India).

Persona de contacto/Corresponding author: balajiserc1@yahoo.com



M. B. Anoop et al.

1. INTRODUCTION

Prediction of the behavior/response of reinforced
concrete (RC) structures/structural members is required
for design or for scheduling inspection/maintenance
activities. A number of studies have been reported in
literature on the application of stochastic models for
planning of inspection and maintenance activities. For
instance, Newby and Barker (1) proposed a bivariate
process model for making decision about monitoring
and maintenance of systems described by a general
stochastic process, wherein the system is monitored and
maintenance actions are carried out with respect to the
system state observed. Recently, a survey of the
application of gamma process in modeling deterioration
of systems for making optimal inspection and
maintenance decisions is given by Noortwijk (2).
Kuniewski et al. (3) modeled the random initiation times
and stochastic growth of defects in deteriorating
systems using a non-homogeneous Poisson process and
a non-decreasing time-dependent gamma process,
respectively, and proposed a sampling-inspection
strategy for the evaluation of time-dependent reliability
of deteriorating systems. Nicolai et al. (4) presented a
model for optimal maintenance of protective coatings on
steel structures, wherein the deterioration of coatings,
represented by the size of the area affected by
corrosion, is modelled using a non-stationary gamma
process. Barker and Newby (5) determined the optimal
non-periodic inspection strategy for a system whose
state is described by a multivariate stochastic process.
These studies indicate that the application of stochastic
processes for modeling the system response evolution is
an active area of research for planning of inspection/
maintenance.

In order to ensure the satisfactory performance of the
RC structural members against the serviceability limit
states under service loads, stochastic modeling of
response state evolution under these loads is important.
It is well known that the serviceability limit states are
closely related to the strain developed in the structural
member at the level of reinforcement (for e.g. BS 8110
(6)). Hence, it is important to predict the strains in
RC structural members under the service loads. Due to
random variations in applied loads and variations in
dimensions and material properties of the structural
elements, there will be variations in the response of RC
structure/structural element. Even at a given/specified
load level, due to variations in system properties, the
response should be considered as random. Hence, the
evolution of response through different stages of applied
loading will be a stochastic process. Thus, there is a need
to develop suitable stochastic models for the prediction
of response state of the structure/structural element at
different stages of loading.

Markov chain (MC) models are the simplest stochastic
models that are extensively applied in engineering (7-
11). MC models have been successfully used for
modeling crackwidths in RC flexural members under
monotonic and fatigue loading (12, 13), for modeling
load-deflection behavior of ferrocement elements (14),
for condition assessment of RC bridge girders based on
limited inspection data (15) and for condition
assessment and remaining life assessment of RC
flexural members subjected to corrosion of rein-
forcement (16). Prakash Desayi and Balaji Rao (12)
proposed the use of nonhomogeneous Markov chains
for modeling the cracking behavior of reinforced
concrete beams subjected to monotonically increasing
loads, wherein the elements of Transition Probability
Matrix (TPM) are computed using Monte Carlo
simulation. While in (12), the emphasis was more on
understanding the cracking behaviour, use of Monte
Carlo simulation may not be a viable option due to the
computational efforts required. In the present study, a
bi-level homogeneous Gaussian Markov Chain
(BLHGMC) model is proposed for stochastic modeling
of experimentally observed strain variations in three
reinforced concrete flexural beams at different load
steps. The elements of TPM are computed using the
mean and standard deviation obtained from first order
approximation, thus keeping the computations to a
minimum. The predicted statistical properties of strains
using BLHGMC model are compared with strains
obtained from a probabilistic analysis and also with
results from experimental investigations. The results
indicate that proposed model shows promise for
prediction of stochastic evolution of strains in RC
flexural members with loading. Since the scope of the
paper is to evolve a simple methodology for prediction
of strain, the application of fracture mechanics is not
considered.

The paper is organized as follows. The data on variation
of strain with loading for RC beams used in this study are
taken from results of experimental investigations
reported in literature, and the salient details of these
experimental investigations are given in Section 2.0. The
need for stochastic modeling of evolution of strain with
applied loading is demonstrated in Section 2.1, followed
by the Markov chain modeling of evolution of strain. The
step-by-step procedure for determining the evolution of
strain in reinforced concrete beams at different load
steps using the proposed BLHGMC model is given in the
Section 2.3. The application of the methodology is
considered in the Section 2.4. In Section 3.0 the results
obtained using the proposed model is compared with the
results from experimental investigations and the results
obtained are critically discussed. Based on the results
obtained conclusions are drawn in Section 4.0. Future
direction of research is also presented in this section.
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2. DETAILS OF EXPERIMENTAL
INVESTIGATIONS

The data on variation of strain with loading for reinforced
concrete beams used in this study is taken from results of
experimental investigations reported by Prakash Desayi and
Balaji Rao (17, 18). This data is used in the present study,
since strain measurements over the entire constant bending
moment region along the span at eight different positions
for different loading stages (upto ultimate) for three
reinforced concrete beams have been taken and reported,
which will be useful for studying the characteristics of strain
evolution for developing the models and for studying
the usefulness of the proposed model. Availability of such
extensive data is scanty in literature. Salient information
regarding the experimental investigations is given below.

Three beams of similar cross-sectional dimensions of
250 mm x 350 mm and 4.8 m long were cast and tested in
two-point bending over an effective span of 4.2 m. Stirrups

of 6 mm diameter were provided in the combined bending
and shear zone to avoid shear failure, and no stirrups were
provided in the constant bending moment zone. Details of
the beams are given in Table 1. The constant bending
moment zone of the beams (1.4 m) was divided into eight
sections (denoted as D', C, B, A, A, B, C and D on the west
face and, Dy, Cy, By, Ay, A;, By, C;" and D; on the east
face) , with each section having a gauge length 200 mm
(see Figure 1). In each section, demec points were fixed at
eight different positions on both faces of the beam (east
face and west face). As can be seen from Figure 1, position
1 corresponds almost to the extreme compression fibre for
all beams; and position 7 in case of beam KB1 and positions
7 and 8 in case of beams KB2 and KB3 correspond to
position of steel bars. The beams were tested in two-point
loading in a 25 ton (245.25 kN) capacity testing frame. To
measure the surface strains at different positions, a demec
gauge with least count 1x10-5> and gauge length of 200.1
mm was used. The loads applied on the beams at different
loading stages are given in Table 2.

Table 1. Details of beams (17, 18).

. 150 mm concrete . .
Beam Eﬁectl\(/;ie):pth (d) Aq (mm2) cube compressive nl]\llct)::.:t.;smgzy Crac:(l::lg;j*load UItlrr(I::;*Ioad
strength (MPa) P
KB1 311.0 402.123 33.078 4.036 23.549 95.389
KB2 305.4 437.929 40.417 3.578 14.014 104.653
KB3 303.5 529.327 22.508 2.950 8.899 84.291
Note: span (/) = 4200 mm, breadth (b) =200 mm and depth (D) = 350 mm for all three beams
* - obtained from experimental investigations.
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Figure 1. Test specimen (dimensions in mm) (17, 18).

Table 2. Loads applied on the beams at different stages of loading.

Load Applied (kN)
Loading Stage

KB1 KB2 KB3
1 10.52 4.48 8.90
2 16.61 8.90 17.80
3 28.99 14.24 26.67
4 38.28 17.80 39.78
5 48.95 22.25 52.97
6 57.37 26.67 70.90
7 65.66 35.42 -
8 - 44.16 -
9 - 57.44 -
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2.1. Need for stochastic modeling of strains

The strains at positions 1 and 8 on different sections of
both faces of beam KB1 for loading stage 6 are shown in
Figure 2. From this figure, it is observed that strains
at a given depth and at a given loading stage show
considerable scatter. Same trend has been observed for
strains at other positions and also for strains at different
positions of beams KB1 and KB3, for different loading
stages. Generally, analysis and design of reinforced
concrete members is based on cross-section analysis (of
critical section). The experimentally observed variations
in strain, along the length, correspond to possible
variations at different depths at a cross-section (as all
the sections are located in constant bending moment
zone and can be considered to be nominally similar). To
take into account this scatter, the strain (¢) at a given
depth at a given loading stage should be considered as
a random variable. Figure 3 shows strains at different
sections (average of strains for the two faces) at
positions 1 and 8 of beam KB2 for different stages of
loading. From this figure, it is noted that the variations
of strains at different sections, at a given depth and for
a given loading stage is different for different stages of
loading. Treating strain at a given depth as a random
variable will not account for random characteristics of

strain at previous loading stages. In order to model
evolution of strain with loading, taking into account its
past history, it has to be modeled as a stochastic
process, i.e., when nominally similar reinforced concrete
beams are subjected to same loading, evolution of strain
at a given depth with loading should be treated as a
stochastic process. In the strict sense, the process
should be treated as stochastic along the length of beam
also. But in the present study, only evolution of strains
with loading is considered as stochastic.

To study correlation between strains (at a given depth) at
two successive stages of loading, corresponding strains at
all the sixteen sections are paired together. These sixteen
pairs of data are enhanced to 1600 data points using
bootstrap method. It is found that there is a strong
correlation (p =~ 0.99) between strains at two successive
stages of loading. This indicates that the stochastic
process should be described at least as a one-step
memory process. Considering the stochastic process to be
a one-step memory process (i.e., present state of system
can be completely determined by the immediate past
state), the process can be considered as one-step Markov.

The variations in statistical properties (namely, mean
and standard deviation) of strain, obtained from
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Figure 2. Variation of strain along the span in the constant bending moment region at positions 1 and 8 for beam KB1
(loading stage considered = 6, see Table 2).
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Figure 3. Variation of average strain at different sections along the span in the constant bending moment region at positions 1 and 8
for beam KB2 (refer to Table 2 for details of loading stages).
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experimental investigations, at the extreme compression
fibre (position 1) and at the level of reinforcement with
loading for the beam KB3 are shown in Figure 4. Normally,
a good design will not allow tensile reinforcement to
undergo yielding under the service loads. Assuming the
service load to be ultimate load/1.5, it is noted from Figure 4
that a bilinear approximation (with the lines representing
the strain evolution before and after cracking) for
evolution of statistical properties of strain with loading at
a given depth holds good within the service loads.
Similar behaviour has been observed for the beams KB1
and KB2 also. A trilinear curve, with the third line
representing the evolution of strain after the yielding of
tensile reinforcement, would be more appropriate for
representing the variations in the statistical properties
(see Figure 4). Since in the present study, the interest is
in modeling the evolution of strain under the service
loads, a bi-level Markov Chain (first level for modeling
the behavior before cracking and second level for modeling
the behavior after cracking) is used for modeling the
strains at different stages of loading.

2.2. Markov chain modeling of evolution
of strain

From the above discussion, it is noted that evolution
of strains at a given depth with loading should be
treated as a stochastic process. The index space of
this stochastic process is the load step, which can be

considered as discrete, {P;, P, ..., P,}. The state space
of the stochastic process represents strain range at a
given depth at any load step. By dividing the state space
into finite number of discrete states (each state
represents a finite range of strain at the depth
considered in the reinforced concrete beam), the strain
can treated as a stochastic process with discrete state
space and discrete index space. Hereafter the reinforced
concrete beam is referred to as the system. The
probabilistic evolution of the process, in general, can be
described by the transition probabilities [1].

TP=PP)=iP)=i-1eP_)=
i-2,...e(P)=1} [1]

In this study, the probabilistic evolution of strain is
obtained by making the following assumptions.

e Since all sections located in constant flexure zone
(Figure 1) are nominally similar, evolution of strain in
one section only is considered in modeling.

e The stochastic process can be described as a one-
step memory process. This implies that the process is
Markov and present state of the system can be
completely determined by its immediate past state.
This assumption is justified since strains at th step
(i.e. at load step P;) more or less depends on strains
at (i-1)th step (i.e. at load step P;_;), as indicated by
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Figure 4. Values of mean and standard deviation of strains at positions 1 and 8 of the beam KB3 (strain data obtained from
experiments, P, and P, are the experimentally observed cracking load and ultimate load, respectively).
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the strong correlation between strains in two
successive load steps.

e Since variations in statistical properties (namely,
mean and standard deviation) of experimentally
observed strains with loading at a given depth can be
approximated by a bilinear curve (Figure 4), a bi-level
homogeneous Markov Chain can be used for
modeling evolution of strains (i.e., first level
corresponding to evolution of strains before cracking
and second level corresponding to evolution of
strains after cracking).

e The stochastic process has a discrete, finite state
space {1, 2, ..., m}, and, a discrete index space {1,
2, ..., N}, where index 1 is interpreted as load step =
P;, index 2 is interpreted as load step = P,, and so
on. The system can make transitions from a given
state to all higher and/or lower states. This implies
that state of strain can increase or decrease with
increase in loading. This assumption is justified due
to the following: In tension zone, strain in concrete
at a section depends not only on loading but also on
the degree of cracking. While the average strain
across the beam at a given depth increases with
loading, strain in a particular section can increase or
decrease due to the formation of new cracks in the
tension zone and the state of cracking in the adjacent
nominally similar sections. This is consistent with the
first assumption. Accordingly, magnitude of strain in
compression zone can also increase or decrease.

Using these assumptions, transition probability for the
system is given by [2].

Py (BB )= Ple(B.,)= e(R)=iT;
1<i<m, 1£j<m, 1<k<n-1 [2]

The probabilistic evolution of the system is given by the
transition probability matrix (TPM) [3].

P(’Dk ’ Pk+1 ):[pij (Pk ’ Pk+1 )]1sf5m,15jsm’
for 1<k<n-1 [3]
Since the state space considered is such that the states
are mutually exclusive and collectively exhaustive [4].
m
Zp,-j(Nk,NkH):L for 1<i<m [4]
j=1

2.2.1. Determination of k-step TPM

The probabilistic description of the state of strain after k-
load steps (within a given segment of evolution) is given
by (Chapman Kolmogorov equation [5]).

P(P,,Pk):P(ID1,P2)><P(P2,P3)><
P(F’S,P4 )x XP(Pk71,Pk) [5]

It is noted that the elements of 1-step TPM [3] and
k-step TPM [5] are conditional probabilities [2]. Since a
homogeneous Markov Chain is considered in this study,
P(P, Pi.1) = P(Py.;, P). Hence, the k-step TPM is given
by P(P;, P) = PPy, P,). The unconditional probability
vector of the state of strain, after k-load steps can be
determined from [6].

(PU (Pka ))1><m = (P(O))1><m ><[P(P7,Pk )]mxm 6]

where is the vector representing the probabilities of
initial states of the system.

2.2.2. Determination of elements of TPM

A typical element of 1-step TPM [2], can be written as
(71,

)= PlePy.s)=ineP)=i} [7]

PeP)=i}

which gives the probability of strain being in state ‘j at
load step Py, ; given that the strain was in state '/’ at load
step P,. Computation of these probabilities requires
information regarding joint probability density function
(jpdf) of state of strain at any two successive load steps,
(Py, Py+1) and pdf of state of strain at load step, Py. Since
it is difficult to generate this information from test data,
in the present investigation, it is assumed that strain
states at successive load steps follow bivariate normal
distributions and at any load step, strain state follows a
normal distribution. The choice of bi-variate normal
distribution is also supported by the large values of
correlation coefficient (p =~ 0.99) observed between
strains in two successive load steps. It is also noted
that when values of mean, variance and correlation
coefficient between strain states at two successive load
steps (oxk+7) are known, the maximum entropy
distribution would be bivariate normal distribution (19).
Similarly, the mean and variance are the only
information available with respect to the state of strain
at any load step, and in such a case, the maximum
entropy distribution is the normal distribution (19).
Hence, it is assumed that the state of strain at any load
step follows normal distribution. Knowing the jpdf and
pdf, and using [7], the elements of TPM can be
computed. A typical element of the conditional 1-step
TPM is given by [8].

pij(Pk’Pk

J: J: fk,k+1(€k’8k+1)d€kd£k+1 [8]

fyl fy (Ek)dsk

where fi k.1 (e ek+1) IS the bivariate normal distribution
and is given by [9].

pij(Pk'Pk-H):
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and fi(¢,) is the univariate normal distribution, given by [10].

2
1 1€ — Wy
foley) = —m—expl— [ SR | e, <
27I0k 2 Oy
[10]

[8] is general and can also be used to formulate TPM for
cases wherein the jpdf is other than bivariate normal.

2.2.3. Determination of mean and standard deviation
of unconditional strain state at any load step

The statistical properties of state of strain of the system
at any load step are computed using the following
procedure proposed by Balaji Rao and Appa Rao (13).

e Divide state space into mutually exclusive and
collectively exhaustive event sets and compute the
central value of each event set, namely, (4s;, As;, ...,
Asm-_ll ASm)

e Compute unconditional probability vector of states of
the system at any load step, that is, (p;, P2 P3 -
Pm) using [6].

¢ Compute mean and standard deviation of strain in
the beam at the position considered using [11].

m

Mean = (s,,)=3 (as,)p,(P;.P,) [11]

i=1

Standard deviation [12] =

SD; :\/[i (as; )ZP/ P, P )]_<S7,k>2 [12]

2.3. Proposed BLHGMC model

The step-by-step procedure for determining the state of
stain in reinforced concrete beams at different load steps
using the proposed BLHGMC model is given below.

1. Determine the cracking moment (M) for the beam
and the corresponding cracking load (P,)

2. Divide the loading into discrete load steps as {P;, P,
s P} with P, < P for the first level (i.e., before
cracking) and {P+1, Pn+2 ...} With P,.; > P, for the
second level (i.e., after cracking).

3. Determine the mean and standard deviation of strain
at the initial two load steps before cracking (i.e., at
applied loadings of P; and P,) and also at first two
load steps after cracking (i.e., at applied loadings of

P,.; and P,.5). In the present study, first order
approximation is used for determining the mean and
standard deviation of strains at different positions for
different load steps.

From the results of experimental investigations, it is
noted that the average strain variation across depth
of the beam can be considered to be linear almost up
to ultimate load. It is also noted that after cracking,
variation in depth of neutral axis with increase in
loading is not significant even at higher stages of
loading (the maximum variation in neutral axis depth
with increase in loading are 3.27%, 7.11% and 6.57%
of total depth of beam for KB1, KB2 and KB3,
respectively). Hence, strain in the steel (eg) at any
given load step is computed assuming a linear strain
variation across the depth of beam as [13]:

_ M(d - x)

13
E [13]

8S
c

where d is effective depth of steel from extreme
compression fiber, x is depth of neutral axis from the
extreme compression fiber, E. is modulus of elasticity of
concrete and, I'is moment of inertia of the cross-section
(I = I;if the cross-section is uncracked and I = I, if the
cross-section is cracked). The mean and standard
deviation of strain at different load steps are determined
using first order approximation (FOA). Based on results
of simulation, a value of py 1, = 0.90 is recommended
for futuristic applications (for flexural members).

4. Determine the elements of 1-step TPMs for both
levels (i.e., before cracking and after cracking)
using [8]. (Based on the detailed studies presented
in this paper, a correlation coefficient (pyx+1) of
0.90 is recommended for evaluation of the elements
of TPM).

5. Determine the k-step TPMs for different load steps
and compute the unconditional probability vector for
strain state at any load step using [5] and [6].

6. Determine the mean and standard deviation of
unconditioned strain state at any load step using
[11] and [12].

From the above, it is noted that the proposed methodology
is simple because it makes use of first order
approximations to determine the statistical properties of
strain used in the computation of the elements of TPM,
thereby not requiring any computationally intensive
simulations. The application of the proposed model is
illustrated in the next section.

2.4. Application
The proposed BLHGMC model is used to determine

stochastic evolution of strains with applied loading
for the three reinforced concrete beams considered
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(17, 18). The predicted statistical properties of strains 3. RESULTS AND DISCUSSIONS

using BLHGMC model are compared with results from

experimental investigations and also with strains 3.1. Prediction of mean strain

obtained from a probabilistic analysis (FOA). The

variables considered as random in the analysis together The values of mean strain at position 1 (near extreme
with their statistical properties are given in Table 3. compression fiber) and at position of reinforcement

Table 3. Statistical properties of random variables considered in the probabilistic analysis.

Random Variable Mean Coefficient of variation
Depth of neutral axis (X) from analysis 0.10
Gross moment of inertia of the gross section (I) bD? 0.05
in mm# 12 ’
— - - 3
Moment of inertia of the cracked section (I) in bx® +5Asf(d _Xp? 0.15
mm¢# 3  E
Modulus of elasticity of concrete (Ec) in MPa 5015(f,)!? 0.15

Note: m - modular ratio; /- the compression strength of concrete cylinder in MPa.

= 07 . KB1 - position 1 & 3000 7 KB1 - position 7 o
=} i =}
< -2001 i % 2500 1 " Experimental o
E’ "8 ‘E ——Probabilistic analysis (FOA)
‘®  -4001 ‘S 20001 & BLHGMC model (0.90)
0 0 o BLHGMC model (0.99)
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Figure 5. Comparison of mean strains obtained from probabilistic analysis (FOA) and BLHGMC model (values of r used in the model
are given in brackets) with experimental results.
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(position 7 for KB1 and position 8 for KB2 and KB3) from
experimental study are compared with that obtained
from the probabilistic analysis (FOA) and from the
BLHGMC model (see Figure 5). From this figure, it is
noted that BLHGMC model gives better results for beams
KB2 and KB3 (even at higher stages of loading),
compared to mean strain predicted using FOA. However,
for beam KB1, values of mean strain predicted using FOA
are closer to experimental values. This suggests that
when cracking is dense and distributed well in the
tension zone, it is important to consider one-step
dependency in prediction of strains.

It is noted that the strains predicted by both the
BLHGMC model and the FOA are not in good
agreement with the experimental values at higher
stages of loading. It should be noted that the
assumption of linear strain variation across the depth
may not be valid at higher stages of loading. This may
be because once the stress in the steel crosses the
proportionality limit, the strain in steel varies
nonlinearly with stress, i.e., the rate of increase of
strain is higher compared to the rate of increase of
strain (17). Hence, the strain variation will no longer
be linear with stress. A tri-linear HGMC model would
have predicted strain values which are in better
agreement with the experimental values. But, as
already mentioned, since the interest is on stochastic
modeling of evolution of strain under the service loads,
the assumption of linear strain variations across the
depth can be made, and hence a bi-level HGMC model
will suffice. It is also noted from Figure 5 that the
strains predicted by the BLHGMC model with a
correlation coefficient (o x+;) of 0.90 are in better
agreement with the experimental results under the
service load range. Hence, a correlation coefficient
(okk+1) of 0.90 is recommended for futuristic
applications.

3.2. Prediction of strain range

Ranges for strains obtained from the experimental studies
together with the lower and upper bounds (computed as
mean = 1.64 x standard deviation) obtained from FOA
and BLHGMC model are shown in Figure 6. From this
figure, it is noted that range obtained from experimental
studies are better covered by the bounds predicted using
BLHGMC model compared to bounds predicted using FOA
for beams KB2 and KB3 (especially the experimental
upper bounds which are of more importance). But, for
beam KB1, ranges predicted using FOA are closer to the
experimental values. For all three beams, upper bound of
strains predicted using BLHGMC model are higher than
experimentally observed strains (except at very high
applied loads), and hence are conservative. These results
indicate that the proposed BLHGMC model can be used for

determining the stochastic evolution of strains with
loading in a reinforced concrete beam.

3.3. Prediction of strain evolution at different
depths

The usefulness of BLHGMC model for predicting strain
evolution at different depths of reinforced concrete
beam is also studied. In Figure 7, mean values and
bounds of strain along depth of beam at an applied
load of 44.15 kN for beam KB2 predicted using
BLHGMC model are given along with mean values and
range obtained from experimental study. It is noted
from Figure 7 that the proposed BLHGMC model can
predict upper bound for strains at different positions
in compression zone, and at all positions considered
except one in the tension zone. The values of
coefficient of variation (cov) of strain across the depth
for different values of applied load (greater than the
cracking load), for beam KB2 using BLHGMC modeling
along with those obtained from results of
experimental study are shown in Figure 8. From this
figure, it is noted that the trend of variation of cov
along the depth obtained using BLHGMC model is
similar to that obtained from experimental study. It is
also noted that after cracking, values of cov is almost
a constant at a given depth for different load steps,
but changes with distance from neutral axis, the
maximum value of cov being nearer to neutral axis.
This is because due to cracking in the tension zone
(which is a random phenomenon), there will be
variations in position of neutral axis at different
section along the span in the constant bending
moment region. Hence, at a depth which is close to
neutral axis, stresses (and hence strains) will alter
between compressive and tensile states as one move
along the span. This results in low values of mean
strain and higher values of cov of strain near the
neutral axis.

4. CONCLUSIONS

Analysis of experimental data of strain evolution with
loading of three flexural members suggest that the
proposed BLHGMC model shows promise for modeling
the stochastic evolution of strains with loading. The
methodology developed is simple since it makes use of
mean and standard deviation computed using first
order approximation of strain. Based on the analysis of
data, a value of correlation coefficient of 0.90 is
suggested for prediction of strains at different stages
of loading. The BLHGMC model will be useful for
predicting the behavior/response of reinforced
concrete beams that would lead to more rational
design.
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Figure 6. Comparison of ranges of strains obtained from experimental studies with bounds (mean + 1.64 * standard deviation)
obtained from probabilistic analysis and BLHGMC model (values of p used in the model are given in brackets).
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Future direction: For assessment of state of condition/
health of reinforced concrete structures, strain
measurements are generally used. In general, during the
field investigations, strains are measured using embedded
electrical resistance strain gauges or strain gauges with very
small gauge length. While they can provide relatively
accurate information based on which local condition
assessment can be carried out, the effect distributed
damage (such as cracking in RC beams) is difficult to
account for in overall condition assessment. The BLHGMC
model is based on surface strains measured over a longer
gauge length of 200 mm. Thus, this model has a potential

for predicting the overall condition of flexural member. Also,
in this study, only flexural members are considered. The
applicability of the present model for development of strains
in the presence of combined load effects can be examined.
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