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ABSTRACT: This study investigated the effects of the addition of untreated sugarcane bagasse ash (UtSCBA) 
on the microstructural and mechanical properties of mortars. The SCBA was sieved for only five minutes 
through a No. 200 ASTM mesh, and fully characterized by chemical composition analysis, laser ray diffraction, 
the physical absorption of gas, scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. 
Mortar mixtures with 0, 10 and 20% UtSCBA as cement replacement and a constant 0.63 water/cementitious 
material ratio were prepared. Fresh properties of the mortars were obtained. The microstructural characteristics 
of the mortars at 1, 7, 28, 90 and 600 days were evaluated by SEM and XRD. The compressive strengths of the 
mortars at the same ages were then obtained. The results show that the addition of 10 and 20% UtSCBA caused 
a slight decrease in workability of the mortars but improved their microstructure, increasing the long-term 
compressive strength.
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RESUMEN: Influencia de la ceniza de bagazo de caña sin tratamiento en la microestructura y propiedades mecáni-
cas de morteros. En esta investigación se evaluó el efecto de la adición de ceniza de bagazo de caña (CBC) en 
la microestructura de morteros. La CBC fue tamizada durante 5 minutos a través de la malla No. 200 ASTM 
y evaluada mediante pruebas de análisis químico, difracción láser, absorción física de gases, Microscopia 
Electrónica de Barrido (MEB) y Difracción de Rayos X (DRX). Se elaboraron mezclas de mortero con 0, 10 
y 20% de CBC como sustituto parcial del cemento manteniendo una relación agua/materiales-cementantes de 
0.63. Se realizaron pruebas en estado fresco y pruebas de caracterización microestructural a través de MEB y 
DRX y de resistencia a la compresión a edades de 1, 7, 28, 90 y 600 días. Los resultados muestran que la adición 
de 10 y 20% de CBC decrementa la trabajabilidad de los morteros, sin embargo, mejora su microestructura e 
incrementa su resistencia a la compresión a edades tardías.
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1. INTRODUCTION

Portland cement is used in concrete and is con-
sidered one of the most fundamental and widely 
produced materials for civic infrastructure projects 
around the world (1–4). Concrete is second to water 
in the total volume consumed per person, approxi-
mately three tons annually (3–4). However, cement 
production is a highly energy-intensive process. The 
manufacture of each ton of Portland cement emits 
approximately 0.8–1.0 ton of anthropogenic CO2 
(depending on the ratio of clinker to cement) into 
the atmosphere (1–2,5). This represents 3–5% of 
current global emissions (1–3), which contribute to 
consequential environmental damage.

As a remedial measure, pozzolanic materials are 
now used as a partial substitute for Portland cement 
in concrete. Numerous studies show that SCBA can 
be used as a pozzolanic material when it is burned at 
temperatures between 600 and 1000oC and subjected 
to post-treatment such as recalcination or grinding. 
Results indicate that such post-treatments change 
some of the physical characteristics and chemi-
cal composition of the SCBA, as well as improve 
the pozzolanic potential (6–12). A post-treatment 
leads to the formation of silica, alumina (7–9,13), 
and especially amorphous silica (6–7). These com-
pounds react with calcium hydroxide (CH), released 
during the hydration of cement, to form additional 
cementitious compounds such as calcium silicate 
hydrate (C-S-H), thus improving the microstruc-
tural properties of concrete and mortar mixtures. 
This could lead to an improvement of some dura-
bility properties without having negatives effects on 
physical and mechanical properties (6–8,11,14–16).

As previously mentioned, most research has 
focused on the effect of post-treatments of the 
SCBA in order to improve its potential activity and 
mechanical properties when used as a pozzolan in 
mortar and concrete; nevertheless, such treatments 
demand high levels of energy and contribute, once 
again, to generating contaminants. SCBA is a by-
product widely available in Mexico. According to 
Mexico’s Union Nacional de Cañeros (National 
Union of Sugarcane Producers) (17), approximately 
54 million tons of sugarcane are produced annu-
ally, from which some 15 million tons of bagasse 
are obtained. Akram et al. (18) reported that each 
ton of sugarcane produces approximately 0.62% of 
residual ash. This suggests that in Mexico approxi-
mately 0.34 million tons of SCBA are produced 
every year, which are mainly deposited in open gar-
bage dumps, causing significant disposal problems 
and pollution.

Taking these last observations into consider-
ation, it was decided that in this study the SCBA 
would be used practically as received from the sugar 
mill (subjected only to sieving, a low energy post-
treatment) as a partial replacement for Portland 

cement. Our proposal was to evaluate the mechani-
cal properties and the microstructure of mortars 
made with relatively untreated bagasse ash.

2. EXPERIMENTAL

2.1. Selection of a low-energy post-treatment method 
for the “as received” SCBA

The SCBA was collected from a sugar mill located 
in the community of Tezonapa, Veracruz, México. 
This ash is generated as a combustion by-product 
of sugarcane bagasse at temperatures between 550 
and 700oC and recovered by sprinkling water during 
the sugar production. The collected ash was homog-
enized and dried for 24 hours in an electric oven at 
105oC.

In order to select the SCBA to be used in subse-
quent phases of this research, its pozzolanic poten-
tial was estimated at 7, 14 and 28 days after the ash 
was subjected to two low-energy post-treatments. 
The first post-treatment consisted of sieving the 
SCBA for five minutes through No. 8 (2.36 mm), 
No. 100 (150 μm) and No. 200 (75 μm) ASTM sieves 
(SCBA8, SCBA100 and SCBA200). The fractions 
removed in the sieving process were 0, 20 y 30% for 
the No. 8 (2.36 mm), No. 100 (150 μm) and No. 200 
(75 μm) sieves, respectively.

The second post-treatment consisted of siev-
ing through the same sieves for the same period of 
time followed by two hours of grinding (SCBA8g, 
SCBA100g and SCBA200g). Sieving was carried 
out to reduce the particle size and to remove organic 
material, and posterior grinding was done solely 
to increase the specific surface area of the SCBA 
(7, 9,12,19–21). Ordinary Portland Cement CPO 40 
Lafarge®, SCBA from each post-treatment (at 20% 
cement replacement), standard silica sand and dis-
tilled water were used to prepare mortar cubes in 
order to obtain the strength activity indexes (SAI) 
(ASTM C 311) of the six post-treated SCBAs. A 
mortar mixture (FA20) containing 20% Admix 
Tech® Class F Fly Ash (FA) was prepared as a ref-
erence; the FA meets the requirements described in 
the ASTM C 618 standard.

Originally, water/cement or cementitious materi-
als and sand/cement ratios of 0.484 and 2.75 were 
used to prepare the mortars in accordance with the 
ASTM C 311. However, a water/cement ratio of 
0.57 for the control mortar and a water/cementitious 
material ratio of 0.68 for mortars containing 20% 
SCBA were necessary to keep the sand/cementitious 
material ratio of 2.75 (ASTM C 311) and to fulfill 
the mortars’ flow of 110±5% (ASTM C 1437). A 
water/cementitious material ratio of 0.56 was used 
for the mortar containing 20% FA to keep the same 
sand/cement ratio and as well fulfill the mortars’ 
flow requirements. No superplasticizer was used in 
these experiments.

https://doi.org/10.3989/mc.2018.13716
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2.2. Selection of the SCBA used for preparation of 
the mortars

SAIs for sieved and ground SCBAs and for the 
FA estimated at 7, 14 and 28 days are presented in 
Figure 1. In accordance with the literature, the SAI 
value increases when the particle size of the SCBA 
decreases as a result of sieving or grinding; the SAI 
also increases with age as a consequence of the poz-
zolanic reaction (7–9,12,21).

Most mixtures had 28-day compressive strength 
values higher than 75% of the control mixture speci-
fied by the ASTM C 618 (this percentage was con-
sidered as a reference point for the analysis since 
the ASTM C 618 accounts for the various materi-
als from natural resources requiring calcination 
to induce satisfactory properties). The only value 
smaller than 75% was for the mortar containing the 
material that passed the No. 8 sieve (SCBA8).

Poor performance of grinding SCBA after pass-
ing through the No. 8 and 100 sieves is supported 
by the fact that the wider sieves allow the passage of 
larger carbon particles, while a posterior grinding is 
not effective in increasing the SAI, as carbon par-
ticles are ground together along with particles rich 
in silica and alumina.

The mixture with 20% FA (FA20) yielded the 
highest SAIs at the studied ages (98, 95 and 104% 
at 7, 14 and 28 days respectively) followed by the 
mixture with the combination of sieved plus 
ground SCBA (SCBA200g) (90, 87 and 95 at 7, 
14 and 28 days respectively), and then only sieved 
SCBA (SCBA200) (85, 91 and 92% at 7, 14 and 28 
days respectively). As may be observed, the differ-
ence between SCBA200g and SCBA200 was not 
significant.

Based on the above information, it was decided to 
use only SCBA sieved through sieve No. 200 (75 μm) 
(SCBA200) for the remaining stages of the present 
research. The SAI at the three ages of the selected 
SCBA was more than 75%; therefore, this material 
can be considered a natural pozzolan, in accordance 
with the ASTM C 618.

2.3. Characterization of materials

From analyzing the results of the previous sec-
tion, SCBA200, the material in which the post-
treatment consisted of sieving it only through the 
No. 200 (75 μm) sieve for five minutes, was selected 
as the study subject for the following phase of this 
research. For brevity SCBA200 will be further des-
ignated only as UtSCBA (Untreated Sugarcane 
Bagasses Ash).

Blended Portland Cement 30R Holcim Apasco® 
(CPC) (approximately 5% ground granulated blast 
furnace slag), which is readily available in southwest-
ern México, was chosen as the cementing material.

Chemical composition, particle size distribution 
(PSD), density (ASTM C 188) and specific surface 
area (SSA) of the CPC and UtSCBA were obtained. 
The PSDs were obtained by wet method (via iso-
propyl alcohol) using a laser analyzer Microtrac 
S3500®; shape particles and refractive indices of 
1.70 and 1.54 for CPC and UtSCBA were consid-
ered respectively. The SSAs were obtained by physi-
cal adsorption of nitrogen using a Quantachrome 
Nova 2000e® analyzer; the BET method was used 
for the analysis. The morphology and mineralogical 
phases of the UtSCBA were analyzed by SEM and 
XRD, respectively. The morphology of the materials 
was observed using a scanning electron microscope 

Figure 1.  SAIs at 7, 14 and 28 days for samples with 20% sieved and ground SCBA.
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JEOL JSM-6490LV® equipped with an X-ray scat-
tering analyzer (EDS) from Oxford Instruments 
7573®. Mineralogical phases were identified using 
a diffractometer Bruker D8 Advance®, which uses 
radiation of CuK and a wavelength of 1.5418Ǻ to 
a passage of 0.05o and a time of incidence of 0.5 
seconds per step, maintaining an interval 2θ from 
10o to 70o.

2.4. Mixture proportioning and preparation of 
the mortars

UtSCBA, river sand (with a density of 2.7g/cm3 
and a fineness modulus of 2.45 (ASTM C 33), dis-
tilled water and a high-range water reducer (HRWR), 
Plastol 4000® (ml per kg of cementitious materials), 
were used to prepare the mortars. All mortars had a 
0.63 water/cementitious material, a 1:3 cementitious 
material to sand ratio, and were prepared replacing 
0, 10 and 20% of the weight of cement by UtSCBA 
(Control, UtSCBA10 and UtSCBA20 mixtures, 
respectively) (Table 1).

Flow table (ASTM C1437), temperature (ASTM 
C1064/C1064M), volumetric weight (ASTM C138/
C138M) and air content (ASTM C231) tests of the 
mortars were carried out. Cylindrical specimens with 
a diameter of 75 mm and a height of 150 mm were 
prepared to study the microstructure and obtain the 
compressive strength. All specimens were cast in two 
layers and compacted using a vibrating table. Only 
the mixtures with an addition of UtSCBA required 
HRWR to maintain the workability. Specimens were 
cured in a 3% calcium hydroxide solution until the 
time of the test.

2.5. Mortar test methods

The morphology of gold-palladium-covered 
mortar samples at 1, 7, 28, 90 and 600 days were 
analyzed using a scanning electron microscope 
JEOL JSM-6490LV®. The mineralogical phases of 
mortar samples ground and sieved through a 150 

μm mesh (ASTM) at 1, 7, 28, 90 and 600 days were 
identified by XRD using a diffractometer Bruker 
D8 Advance® and were analyzed by the software 
EVA version 11.0.0.3®. The compressive strengths 
(ASTM C 39/C39M) at 1, 7, 28, 56, 90, and 450 days 
were obtained by using a hydraulic press ELVEC E 
659®. The compressive strength at 600 days was 
obtained from small mortar cubes (50 x 50 x 50 mm). 
These cubes were obtained from cylinders used dur-
ing the microstructural evaluation. The results from 
the cubes were corrected by size and shape. For this 
purpose, the conversion factors for size and shape 
for normal-strength concrete proposed by Seong-
Tae et al. (22) were implemented.

3. RESULTS AND DISCUSSION

3.1. Chemical and physical properties of the selected 
UtSCBA

Chemical analysis of the selected UtSCBA 
(Table  2) shows that the sum of major oxides 
(SiO2 + Al2O3 + Fe2O3 = 76%) is slightly larger than 
70% of the overall material composition (ASTM 
C 618); this result along with the SAI estimate cor-
roborates the pozzolanic activity of the UtSCBA 
despite the high loss on ignition (LOI) content.

The analysis of the physical characteristics shows 
that the UtSCBA has lower density, greater mean 
PSD and larger SSA than the CPC (Table 3).

Figure 2a shows the PSDs for CPC and UtSCBA. 
It can be observed that the UtSCBA has a PSD 
between 3.8 and 250 μm and CPC between 0.7 and 
400 μm. The results indicate that UtSCBA has larger 
size particles when compared to CPC.

A detailed analysis of the PSD of these materi-
als can be done analyzing their density distributions 
(Figure 2b). UtSCBA shows a monodisperse distri-
bution, which can be associated with a sieved mate-
rial (23). On the other hand, it can be observed that 
for the CPC the PSD shows two particle populations 
(bimodal) at 7 and 30 μm. This type of distribution 

Table 1.  Proportions of mortar mixtures (kg/m3)

Mixture Cement, kg UtSCBA, kg Water, kg Sand, kg HRWR, mL/kg of cementitious materials

Control 465.0 0 293.0 1395.0 0

UtSCBA10 418.5 46.5 293.0 1395.0 2.0

UtSCBA20 372.0 93.0 293.0 1395.0 6.5

HRWR: high range water reducer.

Table 2.  Chemical composition of materials used in mortars (% by mass)

Material SiO2 Al2O3 Fe2O3 CaO P2O5 Na2O K2O MgO LOI

CPC 23.86 5.77 2.19 50.76 0.12 0.91 0.92 1.36 6.97

UtSCBA 56.37 14.61 5.04 2.36 0.85 1.57 3.29 1.43 10.53

LOI: Loss on ignition.

https://doi.org/10.3989/mc.2018.13716
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can be caused by two factors: the presence of particles 
from the different mineralogical components because 
a compound cement was used (13), and the result of 
grinding because fine particles tend to cluster (7).

The UtSCBA show grains of varied shapes and 
sizes in accordance with the calcination conditions 
(Figure 3) (12,24). There are agglomerated parti-
cles with high porosity, typical for organic materi-
als, and prismatic particles with well-defined edges 
(9,25–26).The EDS microanalysis revealed that the 
agglomerated particles (A) are rich in Si, Al and C 
oxides and not so rich in Ca oxides (8). The pris-
matic particles (B) are constituted mostly by Si. 
Furthermore, spherical (C) and fibrous carbon par-
ticles (unburned carbon) (D) were observed. The 
spherical particles are rich in Ca and Si oxides as 
well as Al and Fe, and the fibrous particles con-
tain mainly Si and Al. In this respect, recent stud-
ies (27) found that some fibrous carbon particles 
from SCBA may be covered by Si and O depending 
on the pyrolysis of the bagasse, affirming that the 
unburned carbon can present amorphicity.

In summary, the high LOI, lower density, greater 
PSD, larger SSA (in comparison with CPC), simul-
taneous appearance of amorphous and crystalline 
phases, and variability of the the UtSCBA’s shapes 
and sizes can be attributed to the variations of tem-
perature and air flow during the bagasse’s calcina-
tion process in the sugar mill, in accordance with 
results observed by other authors (24).

The results of the XRD mineralogical analy-
ses show that the CPC (Figure 4a) contains mainly 

di-calcium and tri-calcium silicate, tri-calcium alu-
minate and tetra-calcium aluminoferrite, and to a 
lesser extent calcium oxide, calcium carbonate and 
gypsum. The results of the XRD mineralogical anal-
yses (Figure 4b) show that the UtSCBA exhibited 
amorphous and crystalline phases. The amorphous 
phase in the UtSCBA was observed as a diffuse halo 
in the interval 2θ from 10° to 35°. This halo, which 
is characteristic of pozzolanic materials, suggests 
the presence of amorphous substances such as silica 
(6,8,15,24,28–29). The crystalline phases of quartz 
and cristobalite in the UtSCBA were detected; both 
phases have been reported by others (6, 25, 29). Also 
gibbsite (Al2O3), hematite (Fe2O3) and calcium (Ca) 
phases were identified, and the residual carbon (C) 
phase in the UtSCBA, commonly attributed to the 
bagasse’s LOIs (8,13), was detected at 2θ of 22.8° 
and 26.6°. However, the identification of carbon 
in the crystalline phase was little reliable due to the 
small quantity as well as the overlapping observed in 
the signal.

3.2. Properties in fresh state of mortars

Mortars prepared with UtSCBA presented work-
ability problems which were overcome with a super-
plasticizer, as previously demonstrated in the section 
on the proportioning of the mortar mixture. The 
high LOI content, an indication of the high level of 
unburned carbon particles, can be blamed for this. 
Chandara et al. (30) mentioned that high levels of 
unburned carbon particles increase the requirement 

Figure 2.  Particle-size distribution of materials.
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Table 3.  Physical characteristics of materials

Material
Density 
(g/cm3) D10 (μm) D50 (μm) D90 (μm)

BET specific surface area 
(m2/g)

Retained in the mesh 
325 ASTM (%)

CPC 2.94 2.9 16.3 55.2 3.6 -

UtSCBA 2.19 13.9 40.3 87.3 42.3 60
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Figure 3.  SEM micrographs and elemental analysis of the UtSCBA used in the present study.  
A is an agglomerated particle, B a prismatic, C a spherical, and D a fibrous.
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for water, and Jiménez-Quero et al. (31) reported 
that the variety of shapes of sieved UtSCBA par-
ticles can reduce the flow of the mortar mixtures 
since these particles can increase friction during the 
mixing process.

Mortar with 20% UtSCBA was less dense than 
the other mortars (Table 4). This was expected, as 
UtSCBA is a porous material with a lower density, 
greater mean PSD, and larger SSA than CPC.

3.3. Microstructure of mortars

The micrograph of  the control mortar at day 
1 shows a heterogeneous matrix. The phases of 
C-S-H and CH created from the Portland cement 
hydration were found to be in the majority of  the 
cementitious products (32–33). At 1 and 7 days, 

unhydrated particles of  cement and particles 
with layers of  hydration products were observed 
(Figures 5a and 5b) (32–34). Moreover, disconti-
nuities in the interphase aggregate-cementitious 
paste were observed (Figure 5a) at day 1. At 28, 90 
and 600 days the matrix of  the mortars was denser 
(Figures 5c, 5d and 5e); nevertheless, porous zones 
with cementitious materials and cement particles 
were still observed.

Similarly to the control mortar, micrographs 
of mortars containing 10 and 20% UtSCBA taken 
at day 1 (Figures 6a and 7a) show some cement 
particles, unreacted particles of UtSCBA and some 
cementitious products on the surface of the UtSCBA 
particles. The EDS microanalyses (Figure 6a) show 
the different elements on the surface of a pris-
matic particle of UtSCBA. In UtSCBA mortars it 
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Table 4.  Fresh properties of mortars

Mixture Flow (%) Temperature (oC) Volumetric weight (Kg/m3) Air content (%)

Control 118 22.5 2100 2.80

UtSCBA10 104 20.3 2096 2.65

UtSCBA20 105 20.2 2072 3.4

0 2
Full Scale 1095 cts Cursor: 8.227 (8 cts)

Full Scale 1095 cts Cursor: 8.227 (9 cts)

Full Scale 1638 cts Cursor: 10.866 (26 cts)

Full Scale 1638 cts Cursor: 10.866 (23 cts)

4 6 8 10 12 14 16

0 2 4 6 8 10 12 14 16

0 2 4 6 8 10

a b

c
d

e

12 14 16 18 20

0 2 4 6 8

Element

Element

Element

C
Mg
Al
Si
Ca
Fe
O

TotalFe
Fe Si

Al

MgC

CaCa

O

Fe

Fe

Ca

Ca

Si

Al

O

C

Fe

Fe

Fe

Fe

Ca

Al

C

K
S

Ca

K

O

Si

Fe

Fe
FeTi

S
AlK

O

Ti
Si

Fe

Ca Ca

K

C
Al
Si
Ca
Fe
O

Total

C
Al
Si
S
K

Ca
Fe
O

Total

Al
Si

Ti

S
K

Ca

Fe
O

100.00
56.57
2.73
1.05
43.37
0.54

0.94
12.68 10.98

0.73
0.34
26.97

0.54
1.22
56.97

3.51
1.75
60.68
0.65
2.35
26.48
4.592.43 2.24

Total

100.00
34.15
11.09
45.38
2.04
0.58
0.42
3.33 7.10

0.44
0.55
1.86

28.97
6.46

54.62
18.13
63.50
4.36
1.10
0.69

12.22 CO2

MgO
Al2O3

SiO2

CaO
FeO

CO2
Al2O3

SiO2

CaO
FeO

CO2

Al2O3

SiO2

SO3

CaO
K2O

FeO

Al2O3

SiO2

TiO2

SO3

CaO
K2O

FeO

1.27
37.36
1.74
1.24

16.44
7.98

33.9715.40
3.12
5.46
0.31
0.74

13.29
0.35

61.33
100.00
49.19
0.99

26.70
1.45
0.50
7.68

4.22
9.27

17.75
3.23
9.31

58.96
10.76

56.96
100.00
38.60
8.36

42.14
4.35
1.71
4.84

3.54
24.82
3.66
1.49
9.52

Weight,
%

Weight,
%

Weight,
%

Atomic,
%

Atomic,
%

Atomic,
%

Compd,
%

Compd,
%

Compd,
%

Formula

Formula

Formula

Element Weight,
%

Atomic,
%

Compd,
%

Formula

10 12 14 16 18 20

keV

keV

keV

keV

Figure 5.  SEM observations of control mortar at A) 1, B) 7, C) 28, D) 90 and E) 600 days of age.

was observed that as time passes, the cementitious 
matrixes were denser than the control mortar. The 
same effect was found by Govindarajen et al. (35) 
in cement pastes with 10% SCBA evaluated at 7 and 
28 days, and in concrete when up to 30% SCBA was 
added and evaluated until 180 days of age (36).

The information mentioned above supports  the 
occurrence of pozzolanic reactions as a consequence 

of the CH consumption and the formation of 
C-S-H and calcium-aluminum silicate hydrate 
(C-A-S-H) (Figures 6b, 6c, 6d, 6e, 7b, 7c, 7d and 7e) 
improving in this way compressive strength at later 
ages. However, at 90 days unreacted prismatic par-
ticles of UtSCBA were observed (Figure 6d) in the 
UtSCBA10 mortar; these particles were the largest 
in size and could improve the cementitious matrix 
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Figure 6.  SEM observations of UtSCBA10 mortar at A) 1, B) 7, C) 28, D) 90 and E) 600 days of age.
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at later stages. Finally, at 600 days it can be seen as 
a compacted matrix in both UtSCBA mortars when 
compared to earlier ages.

3.4. Mineralogical composition of mortars

The XRD patterns of the control mortar 
(Figure 8) show that the C-S-H (4CaO.5SiO2.5H2O) 
and CH (Ca(OH)2) were the main mineralogical 

phases formed; both phases were produced during 
the Portland cement hydration. At day 1 the phase of 
calcium silicate (CaSiO3), attributed to unhydrated 
particles in the cement, was detected; at later ages 
the intensity of the peaks of this phase decreased. At 
28, 90 and 600 days a phase of C-S-H with different 
stoichiometry (CaSiO3.H2O) and the phase of C-A-
S-H (CaAl2Si3O10.6H2O) were detected. The appear-
ance of two or more phases of C-S-H is known and 
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reported by other authors (32, 37–38). The C-A-S-H 
is a product formed after activation of the aluminate 
and silicate phases in the presence of CH and could 
improve the microstructure and increase the durabil-
ity of mortars (38). Other phases like quartz (SiO2) 
and anorthite attributed to the sand, and Calcite 
(CaCO3) attributed to the CPC, were also detected.

The XRD patterns of the UtSCBA10 and 
UtSCBA20 mortars (Figures 9 and 10) show the 
increase of the peak intensities of the C-S-H and 
C-A-S-H phases on the mortars as age progressed. 
Both products were created as the result of pozzola-
nic reactions between the UtSCBA, CH and water; 
this observation is supported by the decreased 
intensity of the CH phase and the increase of the 
C-S-H phase in comparison to the control mortar, 
as observed at 28,90 and 600 days. The consumption 

of CH and the increase of the C-S-H in lime and 
cement pastes with the addition of SCBA at ages 
between 3 and 28 days has been reported (25,35).

In the present research, when 10% of cement is 
replaced by UtSCBA a pozzolanic reaction occurs and 
CH still remains in the matrix until the active mate-
rial in the pozzolan is depleted. When 20% cement is 
replaced by UtSCBA, the CH is once again consumed 
but at a slower rate than for 10% UtSCBA. In this mix-
ture there is a larger amount of silica present but also 
a larger amount of carbon, and carbon can be blamed 
for significantly inhibiting the pozzolanic reaction 
(25). When 20% UtSCBA is incorporated there is still a 
considerable amount of CH because only a very large 
replacement of cement by a pozzolan depletes the CH 
content. For example, when more than 50% FA is used 
to replace cement the CH is totally consumed (39).

Figure 7.  SEM observations of UtSCBA20 mortar at A) 1, B) 7, C) 28, D) 90, and E) 600 days of age.
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The above mentioned information and the 
physical characteristics of the UtSCBA explain the 
increase in the compressive strength of mortars with 
the addition of UtSCBA at later ages.

Moreover, the phase of  cristobalite showed 
variations at different ages. These variations can 
be attributed to the disordered structures or its 
metastable state, which could improve pozzolanic-
ity (40–41).

3.5. Compressive strength of mortars

Compressive strength of the mortar mixtures 
containing UtSCBA increased over time. The addi-
tion of 10 and 20% UtSCBA (UtSCBA10 and 
UtSCBA20) increased the strength at 28, 56, 90, 450 
and 600 days when compared to the control mor-
tar (Figure 11). However, the beneficial effect on 
the strength when adding UtSCBA was noted only 
after 28 days. The same effect was observed by other 
authors when ground SCBA was used in concrete 
mixtures (36).

Moreover, it was observed that when the content of 
UtSCBA increased from 10 to 20%, the compressive 

strength at 1, 7, 28, 56 and 90 days decreased 
between 7 and 12%. Chusilp et al. (11) reported this 
effect in mortars with ground bagasse ash and 10% 
LOI (similar to the LOI obtained in this research). 
In contrast, compressive strength results at 450 and 
600 days show that when the content of UtSCBA 
increased from 10 to 20% in mortars mixtures, a 
slight increase in strength occurred. Results show 
that the addition of 20% UtSCBA increased the 
compressive strength by 10.6% and 11.2% at 450 and 
600 days respectively compared with the compres-
sive strength at 90 days, while the mortar with addi-
tion of 10% UtSCBA remains practically constant 
at 90, 450 and 600 days. In this respect, Chusilp et 
al. (16) reported a similar behavior using 10 and 20% 
ground SCBA (95% of the ash passing the No. 325 
sieve and LOI of 8.16%) in concrete mixtures at 28 
and 90 days, in which the compressive strength of 
the concrete with the addition of 20% SCBA was 
greater than that of the concrete with the addition 
of 10% SCBA.

The above mentioned could be attributed to the 
fact that after 90 days the UtSCBA20 mortar has 

Figure 8.  XRD patterns of control mortar at 1, 7, 28, 90 and 
600 days of age. C-S-H: calcium silicate hydroxide; CH: calcium 

hydroxide; C-A-S-H: calcium aluminum silicate hydrate; 
Q: quartz, K: calcite; E: ettringite; A: anorthite; S: calcium 

silicate; and Cb: cristobalite.
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Figure 9.  XRD patterns of UtSCBA10 mortar at 1, 7, 28, 
90 and 600 days of age. C-S-H: calcium silicate hydroxide; 

CH: calcium hydroxide; C-A-S-H: calcium aluminum silicate 
hydrate; Q: quartz; K: calcite; E: ettringite; A: anorthite; 

and S: calcium silicate.
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more unreacted UtSCBA, which improves the poz-
zolanic activity in comparison with the UtSCBA10 
mortar. Likewise, the large fibrous-porous particles 
of UtSCBA (which are covered with a layer of Si 

and O), as well as the small particles, increase the 
specific surface area for the pozzolanic activity; 
consequently there is a gain in strength when 20% 
UtSCBA is added to the mortar.

The results indicate that, despite using a basically 
untreated SCBA as a cement replacement for pre-
paring mortars, ash like this helps improve the long-
term compressive strength and the microstructure 
of such mortars.

4. CONCLUSIONS

Based on the analysis of results, the following 
conclusions can be drawn:

-- The SAIs results show that, for this research, 
the sieving of the “as received SCBA” through 
the No. 200 (75 μm) mesh (ASTM) is an opti-
mal treatment with minimum energy require-
ments in comparison to other treatments such 
as grinding or sieving plus grinding. This treat-
ment leads to a good pozzolanic performance 
of the “as received” SCBA due to the removal 
of large unburnt carbon particles and the reduc-
tion of particle size.

-- Results of XRD show that the UtSCBA (sieved 
through the 75 μm ASTM mesh) is a good poz-
zolanic material due to the presence of amor-
phous phases observed in the interval 2θ from 
10° to 35°. Likewise, the micrographs of the 
UtSCBA suggest that the fibrous carbon par-
ticles can react since they have a layer of Si and 
O on their surfaces.

-- Compressive strength results show that the 
additions of  10 and 20% UtSCBA increase the 
strength of  mortars at ages between 28 and 
600 days. Furthermore, results show that the 
compressive strength of  the mortar with 10% 
UtSCBA is greater than the mortar with 20% 
UtSCBA at ages of  1, 7, 28, 56 and 90 days. 
This was reversed at 450 and 600 days. This 
suggests that the optimum fraction of  UtSCBA 
replacing cement in mortars is 10% by weight 
of  cement.

-- Results indicate that the addition of 10 and 20% 
UtSCBA significantly improved the microstruc-
ture of the mortars by the refinement of pore 
structure and a denser matrix in comparison to 
the control mortar, especially at 28, 90 and 600 
days, despite the large particle-size distribution, 
porous particles and high LOI presented in the 
UtSCBA.

-- Results in the compressive strength and micro-
structural evaluations at long-term ages show 
that the use of 10 and 20% UtSCBA as a replace-
ment for cement might improve the durability 
of mortars. In this respect, long-term durability 
studies using UtSCBA have been addressed in 
ongoing research.

Figure 10.  XRD patterns of UtSCBA20 mortar at 1, 7, 28, 
90 and 600 days of age. C-S-H: calcium silicate hydroxide; 

CH: calcium hydroxide; C-A-S-H: calcium aluminum silicate 
hydrate; Q: quartz; K: calcite; E: ettringite; A: anorthite; 

and Cb: cristobalite.
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