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ABSTRACT: Nowadays, it is imperative to reduce the energy bill in order to contribute to a more sustainable planet. In this 
sense, the use of materials that contribute to the energy efficiency of buildings is a very important contribution to achieve this 
goal. Mortars incorporating phase change materials (PCM) can make an important contribution to this end, due to its thermal 
storage capacity, increasing the energy efficiency of buildings. In this work several mortars with different PCM contents were 
developed, using different binders (cement, aerial lime, hydraulic lime and gypsum). The aim of this study was to apply data 
mining techniques such as artificial neural networks (ANN), support vector machines (SVM) and multiple linear regressions 
(MLR) to forecast the compressive and flexural strengths of these mortars at different exposure temperatures. It was concluded 
that ANN models have the best predictive capacity both for compressive strength and flexural strength. However, the SVM models 
have a flexural strength forecasting capacity very close to ANN models.
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RESUMEN: Predicción del comportamiento mecánico de morteros que incorporan materiales de cambio de fase mediante técnicas 
de minería de datos. Hoy en día es imperativo reducir la factura energética para contribuir a un planeta más sostenible. El uso de 
materiales que contribuyan a la eficiencia energética de los edificios es muy importante para conseguir este objetivo. Los morteros 
con materiales de cambio de fase (PCM), por su capacidad de almacenamiento térmico, pueden contribuir de forma importante a 
este fin aumentando la eficiencia energética de los edificios. En este trabajo se desarrollaron morteros con diferentes contenidos de 
PCM, utilizando diferentes conglomerantes (cemento, cal aérea, cal hidráulica y yeso). El objetivo de este estudio es aplicar técnicas 
de minería de datos como redes neuronales artificiales (ANN), máquinas de vectores de soporte (SVM) y regresiones lineales 
múltiples (MLR) para pronosticar las resistencias a la compresión y flexión de morteros a diferentes temperaturas de exposición. 
Se concluyó que los modelos ANN tienen la mejor capacidad predictiva para la resistencia a la compresión y flexión. Los modelos 
SVM tienen una capacidad de predicción de la resistencia a flexión semejante a los modelos ANN.

PALABRAS CLAVE: Morteros; Materiales de cambio de fase (PCM); Técnicas de minería de datos; Redes neuronales artificiales; 
Máquinas de vectores soporte.
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1. INTRODUCTION

Currently, the huge energy crisis and the increase 
in energy demand in the construction sector result 
in challenges for the prosperity and sustainable de-
velopment of society and the environment. Thus, 
the incorporation of materials with thermal storage 
capability is gaining in popularity (1, 2). The phase 
change materials (PCM) have the ability to decrease 
the temperature fluctuations inside buildings, only 
using solar energy, a widely available, clean and 
accessible energy source for everyone across the 
planet (3-7). Thus, the use of construction materials 
doped with PCM becomes increasingly interesting 
from a thermal and sustainability point of view. 

The PCM incorporation in construction materials 
applied to buildings can be described as a thermal 
energy storage system, increasing the thermal mass 
and improving the thermal performance of building 
elements (8-9).

Over the last years, several investigations have 
been published reporting the benefits from the ther-
mal performance point of view of using PCM in dif-
ferent construction materials, such as mortars (2-3), 
gypsum plasterboards (10-15), bricks (16-19), con-
crete (20-25) and panels (26-31). The PCM presence 
in the construction material contribute to improve 
the energetic efficiency of buildings (7). However, 
the incorporation of this type of materials in con-
struction products also alters their properties from 
a physical and mechanical point of view, especially 
the compressive and flexural strengths (32-35). The 
performance of construction materials incorporating 
PCM depends on parameters such as the raw mate-
rials used, the binder dosage, the PCM content, as 
well as the thermophysical properties of the PCM. 

The experimental studies to evaluate the behavior 
of construction materials doped with phase change 
materials is challenging and time-consuming. Thus, 
optimization studies for the PCM integrated con-
struction materials are needed to improve their be-
havior and efficiency. 

Data mining (DM) is a process of extracting 
information or knowledge from data sets for de-
cision-making purposes (36). The success of data 
mining approach is well documented in civil en-
gineering literature, particularly in domain of the 
mortars. In the last decades, with the advance of 
the artificial intelligent, many models for predict-
ing the mechanical properties of mortars such as 
compressive strength and tensile strength have 
been developed. In this way, many compositions of 
mortars have been tested with different kind of re-
inforcements and additives. Most of the forecasting 
models both for compressive strength and flexur-
al strength are based on artificial neural networks 
(ANN) (37-43). However, there are also models 
based on adaptive neuro-fuzzy inference systems 
(ANFIS) (37, 43), fuzzy logic methods (38), ge-

netic programming (41), support vector machine 
(SVM) (44), random forest (44), decision tree (44), 
and k-nearest neighbors (44). ANN models have 
also been used to predict the effect of elevated tem-
perature both on mortar compressive strength (45-
46) and on mortar flexural strength (46). However, 
none has incorporate phase change materials.

Selimefendigil and Öztop (47), studied an arti-
ficial neural network modeling approach in order 
to estimate the required time for a complete phase 
change with respect to changes in the input vari-
ables of magnetic field strength in each domain 
and solid volume fraction. The authors revealed 
that the technique used provides fast and accurate 
results. 

Bhamare et al. (48) used an artificial neural net-
work as a deep learning approach for predicting the 
Measure of Key Response index (MKR index). The 
MKR index is a comparative assessment indicator 
that provide to select a system that offers better 
thermal behavior compared with others. The ANN-
based model shows a good performance and proved 
its efficacy in training, testing, and sensitivity analy-
sis with the independent dataset. 

Marani and Nehdi (49) claimed to use machine 
learning for the first time to predict the compressive 
strength of PCM-integrated cementitious compos-
ites. In fact, they modeled this mechanical property 
using different machine learning algorithms such as 
random forest, extra trees, gradient boosting and ex-
treme gradient boosting. All of these algorithms are 
based on decision trees. Later, these authors present-
ed a similar work, but based on ANN (50).

We did not find in literature any work similar to 
those developed by Marani and Nehdi (49-50). Fur-
thermore, according our best knowledge, DM tech-
niques has not yet been applied to predict the flexur-
al strength of mortar incorporating PCM.

This work aims to build models to estimate the 
compressive and flexural strengths of mortars incor-
porating PCMs. The large number of parameters in-
volved in the formulations of these materials, as well 
as the complex non-linear relationships between 
them, point out to the use of artificial intelligence 
tools, in particular data mining techniques, which 
have a great potential to obtain such models. 

This paper is structured in the following way. 
After this introduction, chapter 2.1 presents the 
research methodology. Chapter 2.2 describes the 
selection of materials regarding the mortar for-
mulations. Chapter 2.3 describes the experimental 
tests to obtain compressive and flexural strengths. 
Chapter 2.4 briefly describes the data mining pro-
cess and DM techniques. Chapter 3 presents and 
discuss the results obtained through developed data 
mining models the allow to forecast the compres-
sive and flexural strength of mortars incorporating 
phase change materials. Finally, conclusions are 
drawn in Chapter 4.
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2. MATERIALS, FORMULATIONS AND TEST 
METHODS

2.1. Research methodology 

Figure 1 outlines the steps and methodology ad-
opted for the development of this work. 

In this work, twelve different compositions were 
studied and simulated (Table 3 and Figure 2). The 
mortars formulation was based on the flow table 
method, according to the European standard EN 
1015-3 (56). The resulting value from the test was 
only considered when between 200-220 mm.

The selected compositions possess different PCM 
contents (0% and 40% of aggregate mass) and dif-
ferent type of binders (AL, HL, G and CEM). The 
use of different PCM contents and different binder 
types allow to obtain a broader study of the PCM in-
fluence in mortars for interior coating with capacity 
for application in different buildings, since mortars 
can be obtained with greater propensity for applica-
tion in new buildings or in rehabilitation operations.Figure 1. Research methodology.

Table 1. Materials densities.

Material Density (kg/m3)
Portland Cement 3030

Aerial Lime 2450
Hydraulic Lime 2550

Gypsum 2740
Superplasticizer 1050

Fibers 1380
Sand 2600

Phase Change Material 880

Table 2. Phase Change Material properties.

Property
Temperature transition 22.5ºC
Enthalpy 147.9 kJ/kg
Minimum microcapsule dimension 5.8 µm
Maximum microcapsule dimension 55.2 µm
Average particle size 43.91 µm

2.2. Materials and formulations

The raw materials selected for this work were 
based in previous research works developed by the 
authors regarding to the mortars formulation, phys-
ical, mechanical and severe temperature exposure 
behavior (32-33, 51-52). 

The selected materials were Portland cement 
(CEM), aerial lime (AL), natural hydraulic lime 
(HL), gypsum (G), superplasticizer (SP), fibers, 
sand and phase change material (PCM). The materi-
als densities are presented in Table 1.

The used aerial lime had a purity of 90%. The 
gypsum corresponds to a traditional one, with high 
fineness. The hydraulic lime was a natural one 
(NHL5) and the cement is a CEM II B-L 32.5N. The 
used sand has an average particle size of 439. 9 μm. 
The fibers used are synthetic polyamide fibers, with 
a length of 6 mm and 22.3 μm of thickness. 

The PCM selected for this work is a microen-
capsulated solution commercialized by the Devan 
Chemicals (Mikathermic D24). The PCM microcap-
sules consist of a melamine-formaldehyde capsule 
and a core in paraffin, with the characteristics pres-
ent in Table 2. The selection of this PCM was based 
on its transition temperature, so that it was ideal to 
operate in the range of comfort temperatures inside 
buildings (53-55).

2.3. Experimental tests

The obtainment of experimental data for this 
study was based on the performance in flexural and 
compression of mortars with PCM, when submitted 
to different temperatures (20ºC, 200ºC and 600ºC).

The mechanical performance of the mortars was based 
in the European standard EN 1015-11 (57). The flexural 
and compression tests were performed with load control 
at a speed of 50 N/s and 150 N/s, respectively. Three 
specimens with dimensions of 40×40×160 mm3 were 
used for the flexural tests. Regarding the compression 
tests the 6 half parts resulting from the flexural test were 
used with approximate dimensions of 40×40×80 mm3. 
However, the load was applied uniformly distributed 
over a section of 40×40 mm2.
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Table 3. Mortars formulation (kg/m3).

Formulation Binder Sand PCM Superplasticizer Fibers Water/Binder
AL0PCM AL 500 1447.2 0 15 0 0.45
AL40PCM AL 800 451.2 180.5 24 0 0.34
AL40PCM-F AL 800 425.2 170.1 24 8 0.36
HL0PCM HL 500 1351.1 0 15 0 0.54
HL40PCM HL 500 571.6 228.6 15 0 0.62
HL40PCM-F HL 500 567.2 226.9 15 5 0.62
CEM0PCM CEM 500 1418.8 0 15 0 0.55
CEM40PCM CEM 500 644.3 257.7 15 0 0.56
CEM40PCM-F CEM 500 622.2 248.8 15 5 0.59
G0PCM G 500 1360.4 0 15 0 0.56
G40PCM G 500 540.1 216.0 15 0 0.70
G40PCM-F G 500 535.8 214.3 15 5 0.70

Figure 2. Mortars microstructure observation: a) AL40PCM-F, enlargement of 5000x; b) HL40PCM-F, enlargement of 5000x; c) CE-
M40PCM-F, enlargement of 5000x; d) G40PCM-F, enlargement of 5000x.
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The mortars submission to different temperatures 
was performed using an oven, after 28 days of curing. 

Table 4 shows the compositions, the temperature 
exposure and experimental results of tests for ob-
taining the flexural and compressive strengths. Table 
5 shows the statistical assessments of the parameters 
of Table 3 and Table 4.

Table 4 constitutes the database for the DM analy-
ses and the type of binders were labelled as categor-
ical variable: AL, HL, CEM and G.

2.4. Data mining models

The compressive strength and flexural strength 
of mortars incorporating phase change materials 
are modeled through three data mining techniques 
namely multiple linear regression (MLR), artificial 
neural networks and support vector machines. The 
overall process was carried out in the R software us-
ing the RMiner library (58) which allows the easier 
use of DM algorithms. 

MLR is an expansion of the simple regression that 
allows the use of more than one independent vari-
able.

Neural networks try to mimic the functioning of 
the human brain. To do so, they consist of artifi-
cial neuron that are interconnected and send signals 
among them, each one having an associated weight, 
wi,j, where i and j represent neurons. Each neuron 
has an activation function that allows introducing a 
non-linear component. This study used the logistic 
function defined by the expression 1/ (1 + e-x) and 
the following general Equation [1]:

	 	 [1]

where:
xi – input parameters or nodes;
I – number of input parameters;
o – output parameter.

In this study, a widely used architecture called 
multilayer perceptron was adopted with one inter-
mediate layer called hidden layer. Therefore, there 
is one input layer, one hidden layer that has a num-
ber of nodes equal to HN (Hidden Nodes) and one 
output layer. In this study, the search space for HN 
assumed the values {0, 2, 4, 6, 8, 10} (59). 

Support vector machines were initially designed 
for classification tasks and later adapted to regres-
sion tasks with the introduction of the ε-insensitive 
loss function (60-61). The main idea of SVM is to 
transform the input data into a multidimensional fea-
ture space using a nonlinear mapping and find the 
best hyperplane of linear separation within the char-
acteristic space. The nonlinear mapping requires a 
kernel function k(x,x’) that in this study was adopted 
the Equation [2]:

	 	 [2]

Table 4. Compositions and experimental results of tests for de-
termining compressive strength (σc) and flexural strength (σf).

Composition Binder 
Type 
(BT)

Tempera-
ture (ºC)

Com-
pressive 
strength - 
σc (MPa)

Flexural 
strength 
- σf 
(MPa)

AL0PCM AL 20 1.61 0.76
AL0PCM AL 200 2.79 0.79
AL0PCM AL 600 1.86 0.19
AL40PCM AL 20 1.5 0.71
AL40PCM AL 200 0 0
AL40PCM AL 600 0 0
AL40PCM-F AL 20 3.26 1.24
AL40PCM-F AL 200 3.06 0.93
AL40PCM-F AL 600 0 0
HL0PCM HL 20 5.37 1.64
HL0PCM HL 200 6 1.77
HL0PCM HL 600 1.81 0.21
HL40PCM HL 20 2.58 1.09
HL40PCM HL 200 1.59 0.83
HL40PCM HL 600 0 0
HL40PCM-F HL 20 3.27 1.18
HL40PCM-F HL 200 1.85 0.87
HL40PCM-F HL 600 0 0
CEM0PCM CEM 20 28.1 6.78
CEM0PCM CEM 200 24.6 6.58
CEM0PCM CEM 600 12.9 1.69
CEM40PCM CEM 20 8.53 3.03
CEM40PCM CEM 200 3.83 1.32
CEM40PCM CEM 600 0.64 0.11
CEM40PCM-F CEM 20 10.8 3.24
CEM40PCM-F CEM 200 5.49 1.71
CEM40PCM-F CEM 600 0.91 0.19
G0PCM G 20 9.59 3.63
G0PCM G 200 7.7 2.5
G0PCM G 600 3.05 0.74
G40PCM G 20 3.45 1.57
G40PCM G 200 1.47 0.77
G40PCM G 600 0.41 0.16
G40PCM-F G 20 2.7 1.26
G40PCM-F G 200 0.98 0.51
G40PCM-F G 600 0.12 0.07

In addition to the kernel parameter, γ, and ε-insen-
sitive zone width, the regression performance is also 
affected by a penalty parameter, C. The high number 
of possible combinations of ε and C would require 
a huge computational cost. To avoid this, the heuris-
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tics developed by Cherkasy and Ma (62) was used 
to evaluate these parameters. Therefore, the search 
space was limited to γ by using the following values: 
{2-15, 2-13, 2-11, 2-9, 2-7, 2-6, 2-5, 2-4, 2-3, 2-2, 
2-1, 20, 21, 22, 23}.

To evaluate the performance of the models, mean 
absolute deviation (MAD), root mean squared error 
(RMSE) and coefficient of determination (R2) given 
by Equations [3], [4] and [5] were used:

	 	 [3]

	 	 [4]

	 	 [5]

where:
 – number of examples;
 – real value;
 – value estimated by the model;
 – mean of the real values;
– mean of the estimated values. 
The higher the MAD and RMSE are, the better 

the performance of the models. The opposite is valid 
for R.

In the data mining learning process, an algorithm 
is applied to the database to develop a model appli-
cable to new cases. The performance of data mining 
algorithms can be evaluated using several methods. 
In this study, the cross-validation method was used, 
which allows using all available data (63). The da-
tabase was divided into five parts each containing 
roughly the same number of data. Ten runs were per-
formed using four parts of the data for training and 
one part for testing. This allowed obtaining ten val-
idation metrics whose average allowed establishing 
the final validation metrics.

To assess the importance of each of the input pa-
rameters in the models, a sensitivity analysis was 
performed. In this context, the average values of all 

input parameters were maintained except the param-
eter whose sensitivity was being analyzed. Then, the 
value of that parameter was varied from its mini-
mum value to its maximum value. In the end, the 
most important parameter in the model is the one 
that causes the greatest variance in the model output.

To carry out the DM process, firstly all the input 
parameters (binder, fibers, PCM, binder type, Tem-
perature, Sand, Superplasticizer and water) (Tables 
3 and 4) were used and based on the sensitivity anal-
ysis, the number of input parameters was reduced 
bearing in mind their importance. This approach 
was applied to develop models to predict the output 
parameter: compressive strength in chapter 3.1 and 
flexural strength in chapter 3.2.

3. RESULTS AND DISCUSSION

3.1. Compressive strength

As it was mentioned before, the data mining pro-
cess was started using all input parameters given in 
Tables 3 and 4. Through a cross-validation scheme 
using the eight parameters, the metrics shown in Ta-
ble 6 were obtained. Table 6 allows to conclude that 
all the determination coefficients are above 0.64, 
that, according Johnson (64) may be an indication of 
a good forecasting capacity of these models. Table 6 
also shows that the ANN model has the best predic-
tive capacity, given that this model has the highest 
R2 and the lowest errors.

Table 5. Basic descriptive statistics of the parameters used in database.

Parameters Min. Mean Max. Standard Deviation Coef. Var. (%)
Binder - ρ (kg/m3) 500 550 800 113.39 20.62

Fibers (kg/m3) 0.00 1.917 8.00 2.85 148.82
PCM (kg/m3) 0.00 145.20 257.7 106.77 73.51
Sand (kg/m3) 425.20 827.90 1447.2 245.83 89.94

Superplasticizer (kg/m3) 15 16.5 24 411.12 49.66
Water (kg/m3) 225 292.1 350 3.40 20.62

Temperature (ºC) 20.00 273.30 600.00 33.83 11.58
σc (MPa) 0.00 4.50 28.14 6.28 139.70
σf (MPa) 0.00 1.34 6.48 1.61 120.94

Table 6. Mean values of the metrics obtained in the cross-
validation scheme for compressive strength.

MLR ANN SVM
R2 0.712 0.800 0.716

MAD 2.655 2.022 2.164
RMSE 3.321 3.094 3.854
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Figures 3 to 5 show the performances of the three 
DM models for compressive strength. Analyzing 
these figures, it is possible to confirm that artificial 
neural networks have the best predictive capacity. 
Furthermore, Figure 3 shows that up about 10 MPa 
the SVM model has a good forecasting capacity.

To assess the relative importance of each one 
of the input parameters a sensitivity analysis was 
performed. Results for all used techniques are pre-
sented in Table 7 and shown graphically in Figure 
6. It should be underlined the strong importance of 
the binder type in all the models. It should be noted 
that the sum of the three most important parameters 
(binder type, temperature and sand) is around 72% 
in the ANN model and 76% in the SVM model. The 
importance of binder type and temperature in com-
pressive strength translates the experimental results. 
However, an experimental study carried out by Pile-
hvar et al. (65) showed that the compressive strength 
is only slightly affected by temperature of the spec-
imen at the testing time and models developed by 
Marani and Nehdi (49) yielded low importance val-
ues for this temperature. Maybe the high tempera-
tures applied in this study can justify this difference 
of importances. As for the importance of sand, once 
its packing is altered by its replacement by softer 
PCM, the porosity and microstructure of the mor-
tar are also altered and, consequently, its compres-
sive strength. This importance was demonstrated by 
experimental studies (65-66), and confirmed by the 
developed models of Marani and Nehdi (49). The 
superplasticizer dosage is of residual importance in 
the MLR and SVM models which is in accordance 
with the models prediction of Marani and Neh-
di (49). Conversely, superplasticizer content is the 
fourth most important feature in the ANN model. 
The models developed by Marani and Nehdi (49) 
attribute a great importance to PCM dosage and it 
was demonstrated in previous studies that (66-68) 
the strength of the paste mixtures reduce with the in-
crease of PCM percentage. In this study PCM is the 
most important feature proposed by the MLR model, 
the seventh in the ANN model and the fifth in the 
SVM model. 

To reduce the number of input parameters, binder, 
fibers and SP were extracted from the database. This 
is because they present the worst averages of the 
amounts obtained in all models. In this way, another 
analysis was done using only five input parameters 
(PCM, binder type, Temperature, sand, superplasti-
cizer and water).

Table 8 shows the performance of the different 
models through the mean values of the three used 
metrics obtained using the cross-validation scheme. 
Once again it is verified that a correlation coefficient 
greater than 0.64 is obtained for all models. This re-
sult is indicative of the good predictive capacity of 
all models. It should be stressed the great improve-
ment of the ANN and SVM models in relation to the 

models based on eight input parameters. Figure 7 to 
9 show the comparison between the measured and 
estimated compressive strength using only five input 

Figure 3. Predicted versus measured compressive strength us-
ing MLR model. 

Figure 4. Predicted versus measured compressive strength us-
ing ANN model. 

Figure 5. Predicted versus measured compressive strength us-
ing SVM model.
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parameters (PCM, binder type, Temperature, sand 
and water). Looking at these figures, it is possible 
to confirm the better predictive capacity of the ANN 
model. Regarding the SVM model, it is found a good 
predictive capacity up to about 15 MPa (Figure 9).

It is possible to see in Table 9 that both MLR and 
SVM models have R2 lower than 0.64. Furthermore, 
the ANN model has higher R2 and lower RMSE but 
SVM has the lower MAD. Therefore, ANN model 
has the best performance. Figure 10 to 12 allow to 
see the performance of the three models. Both ANN 
and SVM models have a very good forecasting ca-
pacity whereas MLR has a poor forecasting capacity.

Table 10 and Figure 13 present the importance of 
each input parameter obtained through a sensitive 
analysis. It should be stressed the great importance of 
temperature and binder type both for ANN and SVM 
models. The sum of the importances of these two in-
put parameters is about 68% for ANN model and 75% 
for SVM model. The third most important feature is 
the water for ANN model and sand for SVM mod-
el. It should be stressed that three of the four models 
developed by Marani and Nedhi (49) to predict com-
pressive strength, not flexural strength, considered 
the water-to-cement ratio as the fourth most import-
ant feature. PCM dosage has the fourth position of 
importance given by ANN and SVM models. In fact, 
experimental studies showed that flexural strength of 
a cement mortar incorporating phase change material 
decreases with increasing amount of PCM (69-70). In 
relation to compressive strength for ANN model only 
one feature of the three most important was changed: 
sand was replaced by water. SVM model maintained 
the same top three important features.

Table 7. Importance of the parameters used in database for 
compressive strength (%).

Parameters MLR ANN SVM
Binder 2.42 9.37 0.42
Fibers 0.13 0.57 0.20
PCM 44.57 2.33 10.51

Binder Type 23.41 29.99 42.17
Temperature 1.60 16.94 19.16

Sand 11.84 24.45 14.61
Superplasticizer 0.93 11.07 0.42

Water 15.1 5.27 12.50

Figure 6. Importance of each parameter in all DM models – 
Compressive strength. 

Table 8. Mean values of the metrics obtained in the cross-val-
idation scheme for compressive strength using PCM, binder 

type, T, Sand and water as input parameters.

MLR ANN SVM
R2 0.699 0.858 0.714

MAD 2.610 1.624 2.001
RMSE 3.417 2.407 3.753

3.2. Flexural strength

In this analysis, steps similar to those carried out in 
the analysis of compressive strength were followed. 
Therefore, initially all parameters were used for data 
mining analysis. Table 9 presents the results obtained 
in the cross-validation scheme.

Figure 7. Predicted versus measured compressive strength us-
ing MR model using PCM, binder type, temperature, sand and 

water as input parameters. 

To reduce the number of input parameters, bind-
er content, fibers and superplasticizer content were 
extracted from the database. This is because they 
present the worst importance obtained in ANN and 
SVM models. Therefore, taking this into account, 
the analyses with only five parameters include the 
same input parameters as those used in the analy-
sis performed with the compressive strength (PCM, 
binder type, temperature, sand, superplasticizer and 
water). 
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Figure 8. Predicted versus measured compressive strength us-
ing ANN model using PCM, binder type, temperature, sand and 

water as input parameters. 

Figure 9. Predicted versus measured compressive strength us-
ing SVM model using PCM, binder type, temperature, sand and 

water as input parameters. 

Table 9. Mean values of the metrics obtained in the cross-vali-
dation scheme for flexural strength.

MLR ANN SVM
R2 0.570 0.710 0.629
MAD 0.809 0.684 0.616
RMSE 1.061 0.989 1.027

Table 11 shows the performance of the different 
models though the mean values of the three used met-
rics obtained using the cross-validation scheme. In 
this study the coefficient of determination of MLR is 
lower than 0.64 and this model has the highest errors. 
Comparing the ANN and SVM models it can be seen 
that ANN have higher R2 and lower RMSE but higher 
MAD. Figure 14 to 16 show the comparison between 
the measured and estimated compressive strength 

Figure 10. Predicted versus measured flexural strength using 
MLR model. 

Figure 11.  Predicted versus measured flexural strength using 
ANN model. 

Figure 12. Predicted versus measured flexural strength using 
SVM model. 

https://doi.org/10.3989/mc.2023.298622


10 • S. Cunha et al.

Materiales de Construcción 73 (350), April-June 2023, e313. ISSN-L: 0465-2746. https://doi.org/10.3989/mc.2023.298622

Table 10. Importance of the parameters used in database for 
flexural strength (%). 

Parameters MLR ANN SVM
Binder 31.26 1.17 1.34
Fibers 0.02 0.07 0.10
PCM 16.62 7.84 7.96

Binder Type 11.08 27.44 27.53
Temperature 2.67 41.03 47.88

Sand 3.5 6.20 12.45
Superplasticizer 30.88 2.55 1.34

Water 3.97 13.7 1.40

Figure 13. Importance of each parameter in all models – Flex-
ural strength. 

Table 11. Mean values of the metrics obtained in the cross-val-
idation scheme for flexural strength using PCM, binder type, 

temperature, sand and water as input parameters.

MLR ANN SVM
R2 0.608 0.719 0.656

MAD 0.802 0.586 0.575
RMSE 1.026 0.941 0.975

Figure 14. Predicted versus measured flexural strength using 
MR model using PCM, binder type, temperature, sand and wa-

ter as input parameters.

Figure 15. Predicted versus measured flexural strength using 
ANN model using PCM, binder type, temperature, sand and 

water as input parameters.

Figure 16. Predicted versus measured flexural strength using 
SVM model using PCM, binder type, temperature, sand and 

water as input parameters. 

using only five input parameters (PCM, binder type, 
temperature, Sand and water). Looking at these fig-
ures, it is possible to confirm that both ANN and SVM 
models have very good performances.

4. CONCLUSIONS

The incorporation of PCM microcapsules in mor-
tars leads to a change in their physical and mechan-
ical performance. On the other hand, it is important 
to note the need for and importance of characterizing 
the reference mortars and mortars doped with PCM 
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based on experimental tests, however these tasks are 
quite time-consuming, so the possibility of using DM 
techniques, based on experimental results, constitutes 
a possible solution to predict the behavior of mortars. 

This work was essentially motivated by the re-
duced usage of DM techniques on the mechanical 
behavior of mortars incorporating PCM. Therefore, 
several samples with different compositions and ex-
posed to different temperatures were submitted to ex-
perimental tests to obtain their compressive and flex-
ural strengths. The obtained results allowed to build 
a database including several parameters.  The appli-
cation of DM techniques allowed the development of 
predictive models for the strengths mentioned above.

Analyses with eight input parameters (binder dos-
age, fibers, PCM, type of binder, temperature, sand, 
superplasticizer and water) were performed and eval-
uated the relative importance of each parameter in the 
developed models. Based on the relative importance 
of the parameters the number of input parameters was 
reduced to five (PCM, type of binder, temperature, 
sand and water) and DM techniques were applied.

This study applied the following DM algorithms: 
Multiple linear regression (MLR), artificial neu-
ral networks (ANN) and support vector machines 
(SVM).

This study allows to extract the following conclu-
sions:

- The ANN algorithm has a very good predictive ca-
pacity to assess both compressive strength and flexural 
strength and has the best performance in all analyses 
performed whereas the MLR algorithm has the poorest 
performance. However, SVM algorithms have a great 
performance to predict the flexural strength.

- The top three important input features attributed 
by ANN and SVM models to predict the compres-
sive strength are binder type, sand and temperature. 

- Concerning the flexural strength prediction, tem-
perature and binder type are the main input features 
considered by ANN and SVM models. Neverthe-
less, the third top input feature is the water for ANN 
model and sand for SVM model. PCM dosage has 
the fourth position of importance given by ANN and 
SVM models.

- Bearing in mind the importances attributed to in-
put features by ANN and SVM models, one can say 
that these models captured, in a way, the expected 
behaviour of mortars incorporating PCM.

- To improve this study, it is advisable to expand 
the number of experimental works in order to in-
crease the database and thus better clarify the rela-
tive importance of each input parameter in compres-
sive and flexural strengths.
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