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ABSTRACT: The traceability of granite blocks consists in identifying each block with a finite number of colour bands that 
represent a numerical code. This code has to be read several times throughout the manufacturing process, but its accuracy is 
subject to human errors, leading to cause faults in the traceability system. A computer vision system is presented to address this 
problem through colour detection and the decryption of the associated code. The system developed makes use of colour space 
transformations and various thresholds for the isolation of the colours. Computer vision methods are implemented, along with 
contour detection procedures for colour identification. Lastly, the analysis of geometrical features is used to decrypt the colour 
code captured. The proposed algorithm is trained on a set of 109 pictures taken in different environmental conditions and validated 
on a set of 21 images. The outcome shows promising results with an accuracy rate of 75.00% in the validation process. Therefore, 
the application presented can help employees reduce the number of mistakes in product tracking.
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RESUMEN: Visión artificial aplicada a la industria del granito para la mejora de la trazabilidad. La trazabilidad de los bloques 
de granito consiste en identificar cada bloque con un número finito de bandas de color, las cuales representan un código numérico. 
Dicho código tiene que ser leído varias veces durante el proceso de producción, pero la precisión de esta lectura se encuentra afectada 
por el factor humano, lo cual lleva a fallos en el sistema. Se presenta un sistema de visión artificial basado en la detección de colores 
y la decodificación de dichas bandas. El sistema hace uso de transformaciones entre espacios de color y varios intervalos para la 
selección de los mismos. Se implementan métodos de visión artificial, incluyendo la detección de contornos para la identificación 
de la posición de los colores. En último lugar, se analiza la geometría del patrón de colores para su decodificación. El algoritmo 
propuesto es entrenado en un set de 109 imágenes tomadas en diferentes condiciones medioambientales y validado en un set de 21 
imágenes. Los resultados son prometedores, demostrando una eficacia del 75% en el proceso de validación. Por lo tanto, el sistema 
propuesto se considera de utilidad a la hora de incrementar la eficacia de la trazabilidad en la industria del granito.
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1. INTRODUCTION

The granite manufacturing industry holds a key 
role in the industrial network of the North-Western 
area of Spain. This region is the largest ornamental 
granite producer, accounting for 62% of the total na-
tional production (1). Traditionally the mining sector, 
including the granite industry, has been reluctant to 
adopt new technologies, but the competitive market 
leaves few options for the mining industry (2). In this 
context, an improvement in traceability is required. 
By definition, traceability involves any processes, 
procedures, or systems that support the generation of 
verifiable evidence about a product as it moves along 
its supply chain (3). Nowadays, blocks are initially 
identified in the quarry with marks indicating type 
and origin, once they reach the factory for further 
processing, they are colour-coded for identification 
purposes (4). Given this setting, a computer vision 
application could prove helpful in the automation of 
the traceability system in use.

The scope of computer vision is the development 
of theories and algorithms for automating the process 
of visual perception. The mathematical basis for im-
age processing and feature analysis was defined by 
several authors, including Ervin E. Underwood, John 
C. Russ, and Jean Serra (5-8), in the last decades 
of the twentieth century and beginning of the twen-
ty-first, while its applications reach a broad range of 
fields, and the potential benefit of its development 
can have a major impact in the upcoming years. Com-
puter vision has found its applications in the mining 
sector, more specifically, in the slate industry for the 
detection of defects in the ceramic industry (9-11), for 
the same purpose in the marble industry (12-16), for 
pattern detection and classification (17, 18) as well as 
in the granite manufacturing industry for the charac-
terization of granite varieties (4, 19), but there has not 
been found any previous research on the applications 
of computer vision for colour detection and analysis 
in order to improve product traceability in this sector.

The current traceability method based on col-
our-coding each granite block is affordable but entails 
a substantial number of drawbacks, which may lead 
to failures. The colours have to identified and inter-
preted as a sequence of integers several times in the 
production process by an employee. This simple task 
can be subject to human error due to fatigue and the 
harsh work environment in the granite industry, plus 
its accuracy is affected by the weathering of the col-
ours. The main goal of the program developed is to 
analyse pictures of granite slabs with the colour code 
drawn on their side and convert the colour bands into 
their corresponding numerical code. Consequently, 
the implementation of a program of this kind would 
dramatically reduce the time needed to decrypt the 
colour code, currently performed manually, and re-
duce human error. In addition, it decreases economic 
losses by avoiding the discard of those slates not cor-

rectly identified. The work presented in this research 
paper is a crucial step in the implementation of this 
system on mobile phone devices for in-factory use 
with the same purpose and even more features.

Section 2 of this paper introduces the materials 
needed for this research, including the granite slabs, 
the images with the colour bands, a middle-class com-
puter, and Python 3.9. and explains the methodology 
of this research, focused on the algorithm developed. 
Section 3 presents the results obtained on the detec-
tion of colour bands on granite and the decryption 
process. Lastly, Section 4 concludes with the main 
findings and future applications.

2. MATERIALS AND METHODS

Granite is by definition a very hard natural igneous 
rock formation of visibly crystalline texture formed 
essentially of quartz and orthoclase or microcline and 
used especially for buildings and monuments. It typ-
ically contains 20-60% quartz, 10-65% feldspar, and 
5-15% mica (biotite or muscovite), although a wide 
range of lithological materials is considered granite 
from a commercial perspective (4). Granite blocks 
mined in the quarry are wired cut when processed in 
the factory to produce the granite slabs. Their dimen-
sions are not consistent and tend to range between 
1.70 to 2.00 meters in width and 20 to 30 mm in thick-
ness.

The database used in this research project consists 
of 130 pictures of granite slabs focused on one of the 
sides of the slab, where the colour code displayed is 
in the shape of bands manually drawn. The sole pur-
pose of this particular type of code is to keep track of 
the granite slab from its entry into the factory until its 
final sale to the customer.

The colour code is made up of a variable number 
of colour bands drawn using spray paint on the gran-
ite block once it enters the factory. They are placed 
either close to the higher or lower edges of the block, 
with a distance of approximately 15 cm in between 
them. Each band can have any of the 8 different col-
ours shown in Table 1, and they can be placed in any 
order. Each colour is associated with a number, which 
makes the block have a specific numerical code de-
pending on the configuration of the colour bands it has 
drawn on its side. This method to numerate, count and 
keep track of every block has been chosen over sim-
ply drawing the corresponding number on the block 
because, to produce the final version of the product, 
the block has to be wired cut. This means that the col-
our bands drawn on the surface of the stone would be 
cut as well, and they would become illegible, losing 
their purpose.

The iPhone 12 Pro camera used to capture the side 
of the granite slabs in the RGB colour space has a 
resolution of 12MP, a ƒ/1.6 aperture, and 26 mm of 
focal length. Development and testing of the program 
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have been completely performed with a 1.6 GHz Intel 
i5 10210U processor with 16 GB (2×8 GB) of RAM. 
The program to identify colour codes is written in 
Python 3.9 using OpenCV, which is an open-source 
computer vision library written in C++ and C.

2.1. Theory of colour detection

A correct choice of colour space is considered cru-
cial in computer vision applications. There are several 
types of colours spaces available, but for the most part, 
they can be classified into two categories: device-de-
pendent or device-independent. The first group in-
cludes those colour spaces, which their representation 
of colours lays further away when compared to how 
the human nervous system senses colours. According 
to (20), the colour spaces in this category, such as 
RGB and HSV, simply encode device-specific data at 
the device level. On the other hand, the colour spaces 
in the second group are directly related to the human 
visual system. They aim to define colour coordinates, 
which can be comprehended by the average observer. 
The basic colour space in this category is CIE XYZ 
and any other colour spaced that can be transformed 
directly into CIE XYZ is considered device-independ-
ent, such as CIE Lab or CIE Luv. Moreover, the con-
cept of uniformity can be applied in this category: a 
colour space is said to be uniform when the Euclidean 
distance between colours in that space is proportional 
to colour differences as perceived by humans (21).

Digital images are usually captured in the RGB 
colour space, whereas hue-based colour models, such 
as HSV, are the most commonly implemented in 
colour detection in OpenCV due to their robustness 
against light changes, while CIE Lab can be more ef-
ficient in measuring colour differences in brightness. 
According to (22), HSV outperforms RGB because it 
is approximately uniform and divides the colour data 
into intensity (Value) and a chromatic part (Hue and 
Saturation).

2.1.1. The RGB colour space

Two of the main advantages of the RGB colour 
space are its simplicity and its additive property, 
which makes it very easy to store and display images 
(23). Nevertheless, this colour model is not the best 
for colour detection, since important colour prop-
erties such as brightness and purity are embedded 

within the RGB channels, which makes it difficult to 
determine specific colours and their reliable work-
ing ranges (24). Furthermore, the original pictures 
were processed in the 24-bit RGB format, in which 
all components have a depth of 8 bits. This makes 
up a maximum number of colours of 28 * 28 * 28 = 
16777216. The components are internally presented 
as unsigned integers in range [0, 255], which is the 
exact value range of a single byte (25).

2.1.2. The HSV colour space

The HSV colour space is a transformation of the 
RGB colour space, and it can be represented in a dif-
ferent coordinate system. The idea of a representation 
in a hexagonal cone (hexacone) was first proposed by 
(26) and it can be observed in Figure 1, where points 
are defined by hue (H), saturation (S), and value (V). 
In this space, hue (H) contains the colour angle in-
formation, saturation (S) represents purity, which 
quantifies how a colour is diluted by white, and value 
(V), which stores the brightness of the colour meas-
uring how far it is from black. The separation of cru-
cial properties such as brightness and purity is what 
makes the HSV colour space a better fit for colour 
detection purposes.

Table 1. Code key for decoding the encrypted unique number that corresponds to every individual granite block processed in the factory. 
Each colour is associated with an integer between 0 and 7. The number of colour bands displayed grows depending on the number of blocks 

that the factory has processed. The images in the database display five bands, which corresponds with positive numbers of five digits.

Black Brown Red Orange Yellow Green Blue Purple
0 1 2 3 4 5 6 7

Figure 1. Hexagonal representation of the HSV colour space, 
where the central axis contains all the different shades of grey 

from black to white. All colours can be defined by their hue (H), 
saturation (S), and value (V). The horizontal cross-sections of 

the hexacone are hexagons of different sizes degrading to black, 
which is a single point. Since hue is an angular measure, the HSV 
colours space becomes highly effective in defining pure colours.

https://doi.org/10.3989/mc.2023.308922


4 • X. Rigueira et al.

Materiales de Construcción 73 (351), July-September 2023, e323. ISSN-L: 0465-2746. https://doi.org/10.3989/mc.2023.308922

The transformation from RGB to HSV as described 
in (27) is given by (28) in the following equations:

	 	 [1]

	[2]

	[3]

For our purposes, and due to its advantages, the 
HSV model was chosen to detect the different colours 
present on the granite slabs.

2.2. Workflow implemented

The presented program uses a computer-vi-
sion-based approach to identify different colour 
bands on granite slabs and output a numerical code 
defined by the colour of each band. The workflow di-
agram of the proposed system is presented in Figure 
3, where the following stages are introduced: (1) data 
acquisition, (2) image pre-processing, and (3) image 
analysis. This workflow is repersented graphically in 
Figure 2.

2.2.1. Data acquisition

The images were obtained in situ, under the effect 
of the changing conditions of the environment, and an-
alysed afterward. As a simple requirement, the colour 

bands must be completely visible. This means that the 
picture cannot be taken up too close to the point some 
colours are left out of the image or from a very distant 
location where the colour bands are unidentifiable. The 
RGB pictures that make up the database of the case stud-
ied were taken in three separate batches under non-iden-
tical conditions. Their features are shown in Table 2.

2.2.2. Image pre-processing

The pre-processing of the images includes two 
main operations. In the first place, pictures are scaled 
down to 15% of their initial dimension, decreasing 
the computational load without compromising the 
final outcome. Furthermore, the program allows the 
user to crop out the area where the colour bands are 
captured on the scaled picture, which entails an in-
crease in the overall accuracy of the results obtained.

2.2.3. Image analysis

The different colour bands are detected by a total 
number of eight functions, one for every colour. They 
share a common algorithm (algorithm 1), but the in-
put parameters change depending on each target col-
our. These inputs are not arbitrary; initially, they were 
set manually, but in order to increase the precision of 
the model, the parameters have to be optimized for 
every case. This is achieved in the training process, 
which aims to minimize the error in colour detection 
and the decryption of the code. In order to accom-
plish this, each colour detection algorithm iterates on 
the available images for every combination possible 
within the ranges set for each parameter. A success 
condition is defined based on the ground truth of 
colours contained in each image. This helps identify 
those combinations which succeed in their task, there-
fore, those parameters with a higher number of true 
positives become the ideal values in each function.

Table 2. Description of the different batches of pictures that make up the database. The first two columns show the name of the batch 
and the number of pictures. The next three columns include the distance between the camera and the granite slab, the angle of the 

camera and the slab, and the area where the picture is focused. The last three columns include the proportion of pictures taken in inside 
lighting conditions, outside and the resolution of the images, respectively.

Name # Pictures Distance (m) Angle (º) Focus Lighting Resolution 
(pixels)

Inside Outside

Batch1 14 1 Not consistent Colour 
bands 100% 0.00% 3472x4640

Bacth2 40 1.75 Parallel Colour 
bands 27.50% 72.50% 3024x4032

Batch3 84 2 Parallel Granite 
slabs 25.90% 74.10% 3024x4032
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Figure 2. Workflow of the proposed computer vision system with the following steps: (1) data acquisition: the pictures used were taken under 
different lighting conditions -cloudy and sunny days- as well as varying distances and angles to the side of the granite slab, (2) image pre-pro-

cessing: images are scaled to a 15% of their original size and the target area is cropped by the user. (3) Colour detection: conversion between the 
RGB and HSV colour spaces and thresholds are implemented to isolate the colour bands, (4) colour identification: blurring, binarization, and 
contour detection help retrieve the coordinates of each colour band which define the order of the resulting numerical code of the granite slab.
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The input parameters for all functions are -1- 
coloured area (CA), -2- coloured ratio (CR), -3- 
width-to-height ratio (WHR), -4- maximum vertical 
distance (MVD), -5- minimum Hue (Hmin), -6- min-
imum Saturation (Smin), -7- minimum Value (Vmin), 
-8- maximum Hue (Hmax), -9- maximum Saturation 
(Smax), and -10- maximum Value (Vmax).

The coloured area -1- defines the minimum num-
ber of pixels that have to be turned on to be consid-
ered a true positive case of colour detection, while the 
colour ratio -2- is given by the relation between the 
number of pixels coloured with the target colour and 
the total amount of pixels; it has the same goal as the 
coloured area but implements a second layer of secu-
rity to avoid false positives. The width/height ratio -3- 
analyses the relation between the width and the height 
of the colour areas detected. Given the fact that the 
colour bands have rectangular shapes, this parameter 
aims to discard all detected areas which do not have 
the minimum width-to-height ratios, such as shades 
or colour spots that do not belong to the colour code 
system. The minimum vertical distance -4- quanti-
fies the required separation between different colour 
bands to be considered independent. These bands are 
drawn directly on the granite block, which is cut after-
ward to generate the granite slabs, in this process the 
colour bands are also divided into several sections. 
As a consequence of this division, gaps are generated 
throughout every colour band, with a direct effect on 
the colour detection process. When the picture is tak-
en, these gaps are usually shown as dark spaces that 
break up the colour band, as a result, several coloured 
areas will be identified, but thanks to the implementa-
tion of this parameter, as long as the detected areas are 
within the height range set by the MVD, they will be 
considered as a single band. Lastly, parameters from 
5 to 10 belong to the HSV colour space and define the 
thresholds for each colour.

Each colour function takes the RGB image, pro-
ceeds with the HSV transformation, and applies the 
colour thresholds on the resulting image. In this case, 
an adaptive multichannel threshold was implemented 
to identify colour in a more reliable way under the 
wide variety of lighting conditions presented in this 
problem. The first of the colour masks takes the low-
est hue, saturation, and value possible for the target 
colour, delimiting the range for these three channels. 
Therefore, once the mask is applied to the HSV pic-
ture, the resulting image is binarized as the pixels that 
are defined within this range are turned into white [1] 
and the ones which fall out of this condition are turned 
off to display black [0]. The mathematical principle of 
this method is introduced in Equation [4]:

	[4]

Where H is hue, S is saturation, and V is value. 
Similarly, the second mask applies the same principle 

and methodology, but in this case, it takes the highest 
values of hue, saturation, and value for the target col-
our. The sum of both masks is applied to the original 
image, concluding the detection of the target colour 
in every case.

In the case that the resulting image delivered by the 
colour detection algorithm fulfils the requirement es-
tablished by the CR parameter, the image is proposed 
for further processing, where the coordinates of the 
colour bands identified are extracted. This process be-
gins with the detection of the contours of all isolated 
coloured areas. To achieve this, the picture is convert-
ed to grayscale and blurred out with the implementa-
tion of Gaussian blur. This helps reduce the sharpness 
of the structures contained in the picture and increases 
the efficiency of the contour detection method.

Gaussian blur is classified as a low-pass filter be-
cause it reduces the high-frequency components of 
the image. It uses Equation [5] explained in (29, 30):

	 	 [5]

Where  is the distance from the origin in the hori-
zontal axis,  is the distance from the origin in the 
vertical axis, and  is the standard deviation of the 
Gaussian distribution. Applying Equation 5 produc-
es a surface on which contours are concentric circles 
with a Gaussian distribution from the centre point. 
The convolution matrix, built from the values of this 
distribution, is applied to the original image, where 
the new value of each pixel is set to a weighted aver-
age of the pixels in its surrounding area. The pixels 
further away from the centre (original pixel) receive 
smaller weights as the distance increases, while the 
original holds the highest value. This helps preserve 
boundaries and edges in a better way compared to 
simpler filters. Additionally, the blurred image is 
binarized before applying contour detection, in this 
step all pixels that are black remain in this state, 
while the rest are converted into white according to 
Equation [6]:

	 	 [6]

Where  is the source image, and  is the desti-
nation image of the same size and type as the source. 
The contour detection method, as defined Suzuki and 
Abe (31, 32), is a border following algorithm, which 
works by starting at a given point on the image and 
following the contour of the object until it returns to 
the starting point. The algorithm keeps track of the 
points visited along the contour, as well as the junc-
tions (i.e., points where the contour branches or re-
connects) encountered along the way. In this process, 
those areas of the picture with an intensity gradient 
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strong enough to be noticed by the algorithm are 
detected and marked up with individual points. The 
result is a point cloud surrounding the different struc-
tures featured in the image. By leveraging this result, 
the area that encloses the colour band is defined with 
the aid of Green’s theorem (33). Such theorem relates 
the circulation of a vector field around a closed curve 
to the flux through the surface bounded by that curve. 
It states that the circulation of a vector field  around 
a closed curve  is equal to the flux of the curl of 

 through the surface  bounded by , as expressed 
mathematically in Equation [7]:

	 	 [7]

Here,  is an infinitesimal line element along the 
curve , and  is an infinitesimal surface element on 
. The circulation is the line integral of  along , and 

the flux is the double integral of the curl of  over the 
surface . The curl of a vector field is defined as a 
measure of the local rotation or twisting of the field. 
It is defined as the vector cross-product of the  op-
erator and :

	 	 [8]

In the case that the obtained coloured area is bigger 
than CA, the contours are drawn, and their length is 
calculated. Next, the irregular and complex shape of 
the contours is simplified to a rectangle, which con-
tains each valid colour area detected. This is achieved 
with the Ramer–Douglas–Peucker algorithm (34, 35), 
which reduces the number of points in a curve through 
approximation, resulting in a smaller series of points. 
The algorithm works by recursively eliminating points 
that are within a given tolerance of the curve. This pro-
cess is repeated until the desired tolerance is achieved. 
The resulting curve is typically a simplified version of 
the original curve, with fewer points but still closely 
approximating the original curve. Given that the col-
our bands tend to have fairly rectangular shapes, a rec-
tangle was selected for this purpose, which wraps all 
around every area defined in this step. Figure 3 shows 
a simplified configuration of these rectangles.

Up until this last step, there can be coloured areas 
of the picture that fulfil all the requirements to be 
considered as colour bands, but in reality, they are 
not. Therefore, the parameter WHR is introduced, 
which sets a limit to the numeric relation between 
width and height for every rectangle. It allows fil-
tering out the vast majority of areas with rectangular 
shapes, eliminating those in which the vertical sides 
are the longest.

Following up comes the implementation of the 
last parameter, MVD. As explained before in this 
section, its goal is to group under the same band 
those areas with equal colour, but which are bro-
ken down into smaller rectangles as seen in Fig-
ure 4. This step avoids the anomalous detection 
of a not realistic number of bands. The relative 
coordinates of each band are retrieved from the 
information contained in the rectangles. For this 
particular application, the  coordinates are sorted 
from least to greatest and analysed in this order. In 
the case the result of the subtraction between  
and  is smaller than the MVD, those two rectan-
gles would be considered as the same colour band, 
otherwise, they would be set to belong to separate 
colour bands. Lastly, the average of all the coordi-
nates belonging to each colour band is calculated 
to get a single value per band, which allows the 
algorithm to read the colours and write the code 
in the correct order. This process is represented 
in Figure 5.

Figure 3. Illustrative representation of how the coordinates of 
the wrapping rectangle are selected. These are defined by the 

maximum and minimum values of x and y contained within the 
perimeter of the coloured area.

Figure 4. Example of a faded green colour band in which the 
algorithm detects two different sections. This scenario could 
account for a wrong number of bands, but the implementa-

tion of the maximum vertical distance (MVD) parameter lim-
its the amount of space between bands to be considered as 

such and joins under a single band those which have similar 
y coordinates.

(b) Green(a) Cropped
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Algorithm 1. [colour_detector(image, CA, CR, WHR, 
MVD, Hmin, Smin, Vmin, Hmax, Smax, Vmax)]
Input: An image and all the parameters defined.
Output: A list containing the (x, y) coordinates of 
each colour band and the colour name.
1.	 image ← RGB2HSV(image)
2.	 masked_image ← thresholds(image)
3.	 binarized_image ← bitwise_and(image, masked_

image)
4.	 coloured_ratio ← (# active pixels in binarized_

image)/(# total pixels in binarized_image)
5.	 if coloured_ratio ≥ CR:

6.	 gray_image ← BRG2GRAY(masked_im-
age)

7.	 blured_image ← GaussianBlur(gray_image)
8.	 binary_thresholded_image ← bin_thresh-

old(blured_image). Pixels turned on are set 
to white, otherwise to black.

9.	 Initialize a list that will store the vertical 
coordinate of the upper-right corner of each 
bounding box (yColor)

10.	 Initialize a list that will store the horizontal 
coordinates of the bounding boxes (ys)

11.	 Initialize a list that will store the vertical co-
ordinates of the bounding boxes (xs)

12.	 contours ← findContours(binary_threshold-
ed_image)

13.	 for i in contours:
14.	 area ← contourArea(i)
15.	 if area > CA:

16.	 drawContour(image, i)
17.	 perimeter ← arcLenght(i)
18.	 corners ← approxPolyDP(i, 

0.015*perimiter)
19.	 x, y, width, height ← boundin-

tRect(corners)
20.	 if width/height ≥ WHR:

21.	 yColor ← store(y)
22.	 xs ← store(x, x+widht)
23.	 ys ← store(y, y+height)
24.	 drawRectangle(img, (x, y), 

(x+width, y+height))
25.	 if yColor NOT empty:

26.	 coordinates ← group if yColor if < MVD 
value.

27.	 Return dictionary with coordinates and colour name.
The final algorithm (algorithm 2) takes an image 

as input and return the corresponding numerical code 
encrypted in the colour bands. All colour detection 
functions are integrated in its architecture. Addition-

Figure 5. Simplified representation of the process followed by the algorithm to group together detected areas or assign them to separate 
colour bands. Firstly, the coordinates are sorted from least to greatest and put together if the result of their subtraction is smaller than the 

number defined by the maximum vertical distance parameter, otherwise, they are divided into different colour bands.
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ally, this algorithm sorts the obtained coordinates of 
each colour to be able to output the numerical code in 
the correct order. Regarding the order in which the co-
ordinates are sorted, this is defined by the position of 
the different colour bands, meaning that if the bands 
are placed closer to the top of the slab, the reading 
direction is downwards, while the reading direction 
changes to upwards if the bands are placed closer to 
the bottom of the slab. Essentially, the colour code 
has to be decrypted starting with the bands which are 
close to one of the horizontal edges, and the algorithm 
knows this by checking which colour band, the higher 
or the lower one, is close to a horizontal edge. By 
knowing which colour corresponds to which number, 
retrieving the coordinates of each colour band, and 
defining the appropriate reading direction, the algo-
rithm can output the encrypted code correctly.

Algorithm 2. [code_decryptor(image, )]
Input: An image and a matrix  with all parameters 
for each colour detection function.
Output: The numerical code encrypted in the colour 
bands draw on the granite slates.
1.	 dict(coordinates, color_name) ← colour_detec-

tor(image, )
2.	 dict(sorted_coordinates, sorted_color_names) ← 

sort(coordinates, color_name)
3.	 numerical_code ← convert the sorted_color_

names into numerical code according to Table 1.
4.	 Return the numeric code contained in the image.

2.3. Training and validation

For this task, the database, which contains a total 
of 130 pictures, is divided into two different sets: the 
training set which has 109 images, and the validation 
set with 21 images, which contain all colours stud-
ied and are representative of the characteristics of 
the database as well as the main challenges for the 
computer vision system. All functions are trained and 
validated respectively on those images that have the 
corresponding target colour. The same database struc-
ture was used to implement the final algorithm, which 
is capable of detecting all colours and decrypting the 
code associated. In the training process, each function 
analyses those images which contain their respective 
colour. If the detection result agrees with the ground 
truth provided for every image, the combination of 
parameters that achieved a satisfactory output is re-
warded. Finally, the combination of parameters that 
has the better performance is considered the final in-
put values for each corresponding colour function.

Since the colour functions need initial parameters 
to start off the training process, they are given approx-
imate values calculated manually based on the HSV 
definition of each colour for the hue, value, and sat-
uration parameters, while CA, CR, WHR, and MVD 
are iterated from zero to their highest value, being the 

last one determined from direct analysis of the image 
features.

3. RESULTS AND DISCUSSION

The training process for each function defined the 
ideal values for the parameters that the colour detec-
tion functions depend on. These results are presented 
in Table 3, where the first column contains the name 
of the different colours present on the slabs. The next 
four columns contain information regarding the ge-
ometrical characteristics of the colour bands, and the 
rest of the columns present the hue, saturation and 
value limits for each colour threshold. 

It is noticeable how, in the training process, the col-
our ratio (CR) between the number of active pixels 
after applying the thresholds and the total number of 
pixels in the image tends to zero. This is due to the 
presence of some faint and weathered colour bands 
that would not be detected otherwise. If CR took 
higher values, some of these images, which actual-
ly contain areas of interest, would get discarded and 
count as a classification error. Additionally, the results 
presented in Table 3 show how the hue measure is the 
most effective in isolating different colours compared 
to the saturation and value. The difference between 
the maximum and minimum hue values is the smallest 
in all colours except black, which need to be isolated 
with the aid of the value variable. This reduces the 
importance of the two other parameters (saturation 
and value), which leads to them having more wide 
ranges explaining the reasoning behind the higher 
limit of the saturation and value threshold having the 
maximum number possible (255) in almost all cases. 
An exception to this rule is the colour black, which 
has to be isolated with the aid of the value parameter.

The conditions and the success rate of every colour 
in the training phase along with the computation time 
are included in Table 4. During the development of 
the program, it was noticed that the colours red and 
brown display two different varieties. The changes 
in the shade of brown have their origin in the weath-
ering of the colour, resulting in two categories: dark 
brown and light brown. In the case of the red colour, 
we hypothesize that its variance is heavily dependent 
on the brightness conditions under which the picture 
was taken. The presence of clouds in the sky or shad-
ows projected on the granite slabs seems to be a likely 
cause for a high hue value, while if the light rays hit 
the granite slab and the shadow is projected backward 
the value of hue for the red colour tends to be much 
lower as it is shown in Table 3. In order to improve the 
accuracy, a double mask method was implemented in 
the algorithm, which works by defining two distinct 
thresholds for each colour variety but still identifying 
them as the same colour.

The results of the validation process for each colour 
function are presented in Table 5. It can be seen in the 
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fourth column that the times required for each calcu-
lation decrease in direct proportion to the number of 
images analysed. The images in this set are complete-
ly new for the algorithm, meaning that it has not been 

trained on them. Therefore, the high success rates in 
this process confirm that the parameters defined in the 
training stage are accurate, and the model can read 
the correct codes of new images which makes it valid.

Table 3. Final input parameters for each colour function obtained by the algorithm after the training process on the 109 images avail-
able in the database. The first four parameters are directly related to the geometrical features of the colour bands, while the six last 

columns present the different ranges in the hue, saturation, and value for the detection of each colour.

Colour CA CR WHR MVD Hmin Smin Vmin Hmax Smax Vmax
Black 50 0 0.8 16 0 0 3 179 255 51

Dark Brown 300 0 1.2 72 5 49 64 15 255 128
Light Brown 300 0 1.2 72 14 74 132 18 255 165

High-hue Red 50 0 0.4 22 171 100 103 179 255 255
Low-hue red 50 0 0.4 30 1 93 97 5 255 255

Orange 250 0 1.1 29 6 112 116 15 255 255
Yellow 150 0 0.2 16 23 69 42 43 255 255
Green 150 0 0.8 18 40 60 0 80 255 255
Blue 100 0 0.6 32 81 113 0 109 255 255

Purple 200 0 0.7 30 120 21 81 155 255 255

Table 4. Results of the training process for each colour detection function. The average success rate stands at 84.28%. The colour 
light brown shows the lowest accuracy due to its similarity with orange.

Colour Images Success rate Total time (sec.)
Black 32 90.32% 0.37

Dark Brown 9 100.00% 0.13
Light Brown 32 57.69% 0.32

High-hue Red 36 83.33% 0.29
Low-hue red 65 79.69% 0.54

Orange 57 78.95% 0.47
Yellow 60 88.33% 0.50
Green 40 95.00% 0.32
Blue 32 83.97% 0.28

Purple 38 85.53% 0.44

Table 5. Results for the validation process for each colour detection function. All colours average a success rate of 86.36%.

Colour Images Success rate Total time (sec.)
Black 8 88.89% 0.14

Dark Brown 4 75.00% 0.04
Light Brown 4 75.00% 0.04

High-hue Red 6 100.00% 0.09
Low-hue red 15 81.25% 0.13

Orange 10 80.00% 0.09
Yellow 13 85.71% 0.16
Green 9 100.00% 0.07
Blue 8 88.89% 0.09

Purple 9 88.89% 0.09
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After the training and validation of all colour detec-
tion functions, these are included in the main archi-
tecture of the final algorithm, which is tasked with the 
detection of each colour band and its conversion into 
the correctly ordered numerical code. In this case, a 
result is classified as true when the output of the algo-
rithm matches the exact numerical code an employee 
would read off the granite slab. Those codes obtained 
from the algorithm whose numbers are not the same 
and/or are not placed in the right orders would be 
considered faults. The colours which present a lower 
success rate tend to have an important negative effect 
on the final result. Particularly, light brown can be 
mistaken for orange, and dark brown can be confused 
with the low-hue red due to their proximity on the 
HSV colour space. These conditions make it difficult 
for the algorithm to achieve a very precise detection 
on all colours, which hijacks the results leading to a 
faulty detection, as can be seen in Figure 6.

The replacement of the colour brown is proposed 
in order to tackle this issue. The spray paint colours 
cyan and light green are encouraged due to their 
strong contrast with the current colours in use, as 

shown in the HSV hexacone contained in Figure 1. 
Moreover, the election of the colour pink was moti-
vated by its great endurance to weathering, as it is 
demonstrated by Alonso-Villar et al. (36). According 
to these authors (36), the use of silicate-based paint 
can be considered as a future line of research to solve 
the detection problem associated with the erosion of 
the spray paints currently employed.

Additionally, most colour detection systems have 
to operate within steady light conditions (3, 5, 37, 38) 
and require stable camera positioning (39-42), while 
the system proposed, although not perfect, achieves 
results in very different conditions. In this case, the 
algorithm shows a success rate of 74.42% on the 
training set, while the validation shows an efficiency 
of 75.00%. Several examples of correct detection are 
displayed in Figure 7.

Several results of the validation process for the 
final algorithm are shown in Table 6. The first col-
umn contains the ground truth for each image, which 
is the numerical code defined by the colour bands 
in each case. The last column shows the numerical 
code decrypted by the algorithm from the information 
represented in the corresponding image of the gran-
ite slabs. The rest of the columns contain each of the 
sorted numbers outputted by the system. According 
to the success condition previously defined, a result 
is correct when all numbers match the ones present 
in the ground truth in the correct order. Two errors 
can be noted in red in Table 6. The result of the fourth 
code presented (24036) is affected by the detection 
of a black area out of place, and the same happens in 
the case of the fifth code of the table (24066). Conse-
quently, the rest of the numbers in the code decrypted 
are displaced by these anomalous detections of black 
areas leading to a faulty result. Considering the fact 
that granite has important black, areas in its structure 
due to the presence of mica, this becomes the main 

(a) Code 23145 (b) Code 23823

Figure 6. Faults in the detection of the colour brown in the 
training set: (a) and (b) failure in the identification of the colour 
brown due to its proximity to orange in the HSV colour space.

Figure 7. Several examples of correct detection of the different colour bands and an accurate output of the code represented by those. 
Images (b) and (e) display the results yielded by the algorithm in the training set, while image (h) belongs to the validation set. Images (c) 

and (d) show how the algorithm is able to detect colour bands that are disrupted in the horizontal axis.

(a) (b) (c) (d) (e) (f) (g) (h)

https://doi.org/10.3989/mc.2023.308922


12 • X. Rigueira et al.

Materiales de Construcción 73 (351), July-September 2023, e323. ISSN-L: 0465-2746. https://doi.org/10.3989/mc.2023.308922

source of errors, despite the final algorithm having an 
accuracy of 75.00% in the testing phase.

4. CONCLUSIONS

The traceability problem in the granite industry 
has been studied in the present research paper. The 
current method to keep track of the granite blocks 
until they reach the final product stage is fairly sim-
ple and cheap, consisting in the usage of graffiti 
spray to assign a color-coded number to each granite 
block. Weathering of the paint and human error due 
to different causes, such as fatigue, lead to a faulty 
reading of the numerical code represented by colour 
bands and ultimately to economic losses for the in-
dustry as well as pollution originated by the granite 
that has not been traced. In this paper, a computer 
vision algorithm is proposed to automate the trace-
ability process in this industry. The computational 
method developed operates in the HSV colour space 
and makes use of a double threshold for the correc-
tion isolation of colours on the granite slabs. This is 
followed by the conversion of the thresholded image 
to grayscale and the application of Gaussian blur-
ring to soften the edges. After the binarization of the 
blurred image, contours are detected and the coor-
dinates of those shapes that approximate to rectan-
gular colour bands are extracted. Lastly, those coor-
dinates are sorted and converted into the decrypted 
numerical code.

The proposed system performs an accurate detec-
tion of a combination of seven out of the eight col-
ours used in the granite industry. It shows success 
rates on the reading of colour codes and the output of 
their corresponding numerical codes of 74.42% in the 
training set and 75.00% in the validation set. Moreo-
ver, these results are achieved on images that display 
different lighting conditions and were not taken with 
a fixed target distance, which increases the difficulty 
in the detection of different colours and adds up to 
the value of the results presented. In conclusion, the 
computer vision system presented is considered to be 

helpful in the granite manufacturing industry owing 
to its accuracy, and it is part of the first approach to-
wards a full implementation on mobile phone devices 
for the corresponding users in each factory.
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