Performance at high temperature of alkali-activated slag pastes produced with silica fume and rice husk ash based activators


  • S. A. Bernal Universidad del Valle - University of Sheffield
  • E. D. Rodríguez Universidad del Valle
  • R. Mejía de Gutiérrez Universidad del Valle
  • J. L. Provis University of Sheffield



Alkali-activated cements, Blast furnace slag, Temperature, Physical properties, Characterisation


This study assessed the mechanical properties, and structural changes induced by high temperature exposure, of alkali-silicate activated slag cements produced with sodium silicates derived from silica fume (SF) and rice husk ash (RHA). Similar reaction products were identified, independent of the type of silicate used, but with subtle differences in the composition of the C-S-H gels, leading to different strength losses after elevated temperature exposure. Cements produced with the alternative activators developed higher compressive strengths than those produced with commercial silicate. All samples retained strengths of more than 50 MPa after exposure to 600 °C, however, after exposure to 800 °C only the specimens produced with the RHA-based activator retained measurable strength. This study elucidated that silicate-activated slag binders, either activated with commercial silicate solutions or with sodium silicates based on SF or RHA, are stable up to 600 °C.


Download data is not yet available.


1. Delhomme, F.; Ambroise, J.; Limam, A. (2012) Effects of high temperatures on mortar specimens containing Portland cement and GGBFS. Mater. Struct. 45 [11], 1685–1692.

2. Matesová, D.; Bonen, D.; Shah, S.P. (2006) Factors affecting the resistance of cementitious materials at high temperatures and medium heating rates. Mater. Struct. 39 [9], 919–935.

3. Handoo, S.K.; Agarwal, S.; Agarwal, S.K. (2002) Physicochemical, mineralogical, and morphological characteristics of concrete exposed to elevated temperatures. Cem. Concr. Res. 32, 1009–1018.

4. Alarcon-Ruíz, L.; Platret, G.; Massieu, E.; Ehrlacher, A. (2005) The use of thermal analysis in assessing the effect of temperature on a cement paste. Cem. Concr. Res. 35, 609–613.

5. Provis, J.L. (2014) Geopolymers and other alkali activated materials: why, how, and what? Mater. Struct. 47, 11–25.

6. Juenger, M.C.G.; Winnefeld, F.; Provis, J.L.; Ideker, J. (2011) Advances in alternative cementitious binders. Cem. Concr. Res. 41, 1232–1243.

7. Provis, J.L.; Bernal, S.A. (2014) Geopolymers and related alkali-activated materials. Annu. Rev. Mater. Res. 44, 299–327.

8. Bernal, S.A.; San Nicolas, R.; Myers, R.J.; Mejía de Gutiérrez, R.; Puertas, F.; van Deventer, J.S.J.; Provis, J.L. (2014) MgO content of slag controls phase evolution and structural changes induced by accelerated carbonation in alkali-activated binders. Cem. Concr. Res. 57, 33–43.

9. Palomo, A.; Krivenko, P.; Garcia-Lodeiro, I.; Kavalerova, E.; Maltseva, O.; Fernández-Jiménez, A. (2014) A review on alkaline activation: new analytical perspectives. Mater. Construcc. 64 [315].

10. Guerrieri, M.; Sanjayan, J.G. (2010) Behavior of combined fly ash/slag-based geopolymers when exposed to high temperatures. Fire Mater. 34 [4], 163–175.

11. Puertas, F.; Gil-Maroto, A.; Palacios, M.; Amat, T. (2006) Alkali-activated slag mortars reinforced with AR glassfibre. Performance and properties. Mater. Construcc. 56 [283], 79–90.

12. Kong, D.L.Y.; Sanjayan, J.G. (2010) Effect of elevated temperatures on geopolymer paste, mortar and concrete. Cem. Concr. Res. 40, 334–339.

13. Bernal, S.A.; Rodríguez, E.D.; Mejía de Gutierrez, R.; Gordillo, M.; Provis, J.L. (2011) Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends. J. Mater. Sci. 46, 5477–5486.

14. Bernal, S.A.; Mejía de Gutiérrez, R.; Ruiz, F.; Qui-ones, H.; Provis, J.L. (2012) High-temperature performance of mortars and concretes based on alkali-activated slag/metakaolin blends. Mater. Constr. 62, 471–488.

15. Rickard, W.D.A.; Williams, R.; Temuujin, J.; van Riessen, A. (2011) Assessing the suitability of three Australian fly ashes as an aluminosilicate source for geopolymers in high temperature applications. Mater. Sci. Eng. A 528, 3390–3397.

16. Rashad, A.M.; Bai, Y.; Basheer, P.A.M.; Collier, N.C.; Milestone, N.B. (2012) Chemical and mechanical stability of sodium sulfate activated slag after exposure to elevated temperature. Cem. Concr. Res. 42, 333–343.

17. Mejía de Gutiérrez, R.; Maldonado, J.; Gutiérrez, C. (2004) Resistencia a temperaturas elevadas de escoria activadas alcalinamente. Mater. Constr. 54, 87–92.

18. Guerrieri, M.; Sanjayan, J.; Collins, F. (2009) Residual compressive behavior of alkali-activated concrete exposed to elevated temperatures. Fire Mater. 33, 51–62.

19. Guerrieri, M.; Sanjayan, J.; Collins, F. (2010) Residual strength properties of sodium silicate alkali activated slag paste exposed to elevated temperatures. Mater. Struct. 43, 765–773.

20. Zuda, L.; Drchalová, J.; Rovnaník, P.; Bayer, P.; Keršner, Z.; Cerny, R. (2010) Alkali-activated aluminosilicate composite with heat-resistant lightweight aggregates exposed to high temperatures: Mechanical and water transport properties. Cem. Concr. Compos. 32, 157–163.

21. Zuda, L.; Cˇerny´, R. (2009) Measurement of linear thermal expansion coefficient of alkali-activated aluminosilicate composites up to 1000 °C. Cem. Concr. Compos. 31, 263–267.

22. Rovnaník, P.; Bayer, P.; Rovnaníková, P. (2013) Characterization of alkali activated slag paste after exposure to high temperatures. Constr. Build. Mater. 47, 1479–1487.

23. Živica, V. (2006) Effectiveness of new silica fume alkali activator. Cem. Concr. Compos. 28, 21–25.

24. Živica, V. (2004) High effective silica fume alkali activator. Bull. Mater. Sci. 27, 179–182.

25. Rouseková, I.; Bajza, A.; Živica, V. (1997) Silica fume-basic blast furnace slag systems activated by an alkali silica fume activator. Cem. Concr. Res. 27, 1825–1828.

26. Rodríguez, E.D.; Bernal, S.A.; Provis, J.L.; Paya, J.; Monzo, J.M.; Borrachero, M.V. (2013) Effect of nanosilica- based activators on the performance of an alkali-activated fly ash binder. Cem. Concr. Compos. 35, 1–11.

27. Mejía, J.M.; Mejía de Gutiérrez, R.; Puertas, F. (2013) Rice husk ash as a source of silica in alkali-activated fly ash and granulated blast furnace slag systems. Mater. Constr. 63, 361–375.

28. Bernal, S.A.; Rodríguez, E.D.; Mejía de Gutierrez, R.; Provis, J.L.; Delvasto, S. (2012) Activation of metakaolin/slag blends using alkaline solutions based on chemically modified silica fume and rice husk ash. Waste Biomass Valoriz. 3, 99–108.

29. Torres-Carrasco, M.; Palomo, J. G.; Puertas, F. (2014) Sodium Silicate from dissolution of glass wastes. Statistical analyses. Mater. Construcc. 64 [314].

30. Salas, A.; Delvasto, S.; Mejía de Gutierrez, R.; Lange, D. (2009) Comparison of two processes for treating rice husk ash for use in high performance concrete. Cem. Concr. Res. 39, 773–778.

31. Bernal, S.A.; Provis, J.L.; Mejía de Gutierrez, R.; Rose, V. (2011) Evolution of binder structure in sodium silicate-activated slag-metakaolin blends. Cem. Concr. Compos. 33, 46–54.

32. Yu, Q.; Sawayama, K.; Sugita, S.; Shoya, M.; Isojima, Y. (1999) The reaction between rice husk ash and Ca(OH)2 solution and the nature of its product. Cem. Concr. Res. 29, 37–43.

33. Lee, W.K.W.; van Deventer, J.S.J. (2003) Use of infrared spectroscopy to study geopolymerization of heterogeneous amorphous aluminosilicates. Langmuir 19, 8726–8734.

34. Yu, P.; Kirkpatrick, R.J.; Poe, B.; McMillan, P.F.; Cong, X. (1999) Structure of calcium silicate hydrate (C-S-H): Near-, mid-, and far-infrared spectroscopy. J. Am. Ceram. Soc. 82 [3], 742–48.

35. García Lodeiro, I.; Macphee, D.E.; Palomo, A.; Fernández-Jiménez, A. (2009) Effect of alkalis on fresh C-S-H gels. FTIR analysis. Cem. Concr. Res. 39, 147–153.

36. García-Lodeiro, I.; Fernández-Jiménez, A.; Blanco, M.T.; Palomo, A. (2008) FTIR study of the sol-gel synthesis of cementitious gels: C-S-H and N-A-S-H. J. Sol-Gel. Sci. Technol. 45, 63–72.

37. Reig, F.B.; Adelantado, J.V.G.; Moya Moreno, M.C.M. (2002) FTIR quantitative analysis of calcium carbonate (calcite) and silica (quartz) mixtures using the constant ratio method. Application to geological samples. Talanta 58, 811–821.

38. Siriwardane, R.V.; Shen, M.-S.; Fisher, E.P.; Losch, J. (2005) Adsorption of CO2 on Zeolites at Moderate Temperatures. Energ. Fuel 19, 1153–1159.

39. Stevens, R.W.; Siriwardane, R.V.; Logan, J. (2008) In situ Fourier transform infrared (FTIR) investigation of CO2 adsorption onto zeolite materials. Energ. Fuel 22, 3070–3079.

40. Holmgren, A.; Wu, L.; Forsling, W. (1994) Surface hydration of aqueous calcium minerals as studied by Fourier transform Raman and infrared spectroscopy. Spectrochim. Acta, Part A 50, 1857–1869.



How to Cite

Bernal, S. A., Rodríguez, E. D., Mejía de Gutiérrez, R., & Provis, J. L. (2015). Performance at high temperature of alkali-activated slag pastes produced with silica fume and rice husk ash based activators. Materiales De Construcción, 65(318), e049.



Research Articles