@article{Li_Cao_Li_Zhang_Shi_Shi_2022, title={Uniaxial tensile behavior and mechanism characterization of multi-scale fiber-reinforced cementitious materials}, volume={72}, url={https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/2539}, DOI={10.3989/mc.2022.05521}, abstractNote={<p>The uniaxial tensile properties of multi-scale fiber-reinforced cementitious material (MSFRCM) with steel and polyvinyl alcohol (PVA) fibers and calcium carbonate whisker (CW) were studied. The results showed that CW improved the uniaxial tensile stiffness, strength, peak strain, and toughness of the steel-PVA hybrid fiber-reinforced cementitious material. The CW not only played a role in the small deformation stage but also improved the load holding capacity and toughness of the hybrid fiber-reinforced cementitious material during the large deformation stage. Computational models to assess the uniaxial tensile strength and toughness of the MSFRCM were established. Microstructure observations showed that the steel and PVA fibers formed a weak interfacial transition zone (ITZ) due to the “wall effect.” The CW effectively optimized the structure of the ITZ of the steel and PVA fibers through physical and chemical effects, such as filling, bridging, improving Ca(OH)<sub>2</sub> orientation, and chemical effects. The steel fibers, PVA fibers, and CW in the MSFRCM bridged cracks at the macro, mesoscopic, and microscopic levels, respectively. As a result, we observed a fiber chain effect that improved the positive hybrid effect between the multi-scale fibers.</p>}, number={345}, journal={Materiales de Construcción}, author={Li, L. and Cao, M. and Li, Z. and Zhang, W. and Shi, D. and Shi, K.}, year={2022}, month={Feb.}, pages={e271} }