Flowability in crushed sand mortar

Authors

  • O. A. Cabrera Universidad Nacional del Centro de la Provincia de Buenos Aires
  • L. P. Traversa LEMIT
  • N. F. Ortega Universidad Nacional del Sur

DOI:

https://doi.org/10.3989/mc.2010.50909

Keywords:

manufactured sand, crushed sand, shape and surface texture, fresh mortar

Abstract


The present experimental study explored the relationship between mortar flowability and the voids content in crushed sand to determine the effect of grain shape and surface texture as well as dust content on the behaviour of fresh mortar. The findings revealed a close correlation between voids content and the volume of paste needed for mortar to begin to flow as a continuous material, mortar flowability and the water content needed to attain a given flowability. The comparison of the empirical findings to the results obtained with the Larrard (1, 2) model provided further information on the effect of sand grain morphology on fresh mortars.

Downloads

Download data is not yet available.

References

(1) De Larrard, F.; Sedran, T.: “Optimization of Ultra-High-Performance Concrete by the Use of a Packing Model”, Cem. Concr. Res., vol. 24, nº 6 (1994), pp. 997-1009. doi:10.1016/0008-8846(94)90022-1

(2) De Larrard, F.; Belloc, A.: “The Influence of Aggregate on the Compressive Strength on Normal and High-Strength Concrete”, ACI Materials Journal, vol. 94, nº 5 (1997), pp. 417-426.

(3) Pettijohn, F. J.: “Rocas Sedimentarias”, 4ª edición, Ed. EUDEBA, 731 p. (1980).

(4) Powers, M. C.: “A New Roundness Scale for Sedimentary Particles”, Journal of Sedimentary Petrology, vol. 23 (1953), pp. 117-119.

(5) Krumbein, W. C.; Sloss, L. L.: “Stratigraphy and Sedimentation”, Ed. W.H. Freeman and Company, San Francisco, USA (1955).

(6) Folk, R. L.: “Petrology of Sedimentary Rocks”, Hemphill Publishing Co, Austin, Texas, USA, 182 p. (1974).

(7) Corrales, I.; Rosell, J.; Sánchez, L.; Vera, J. A.; Vilas, L.: “Estratigrafía”, Editorial Rueda, Madrid, España (1977).

(8) Murdock, L. J.; Brook, K. M.: “Concrete Materials and Practice”, Ed. E. Arnold, London, UK (1979).

(9) Popovics, S.: “Concrete Materials: Properties, Specifications and Testing”, Ed. Noyes Publications, 2nd Edition, New Jersey, USA (1992).

(10) Shergold, F. A.: “The Percentage Voids in Compacted Gravel as a Measure of its Angularity”, of Concrete Research, vol. 5, nº 13 (1953), pp. 3-10.

(11) Gray, J. E.: “The Effect of Shape of a Particle on Properties of Air-Entrained Sand Stone Mortar”, Crushed Stone Journal, vol. 36, nº 3 (1961), pp. 3-8.

(12) Hughes, B. P.; Bahramian, B.: “A Laboratory Test for Determining the Angularity of Aggregate”, Magazine of Concrete Research, vol. 18, nº 56 (1966), pp. 147-152.

(13) Powers, Treval C.: “The Properties of Fresh Concrete”, Ed. John Wiley & Sons, Inc., USA, 664 p (1968).

(14) Kalcheff, I.: “Portland Cement Concrete with Stone Sand”, Special Engineering Report, Ed. National Crushed Stone Association, Washington, DC, USA (1977), 20 p.

(15) Janoo, V.: “Quantification of Shape, Angularity and Surface Texture of Base Course Materials”, US Army Corps of Engineers, Special Report 98-1 (1998).

(16) Mather, B.: “Concrete Aggregates: Shape, Surface Texture and Coatings”, Significance of the Properties of Concrete, ASTM STP 169-A, Philadelphia, USA (1966), pp. 415-431.

(17) ASTM D-3398: “Standard Test Methods for Index of Aggregate Particle Shape and Texture” (2000).

(18) Norma ASTM C-1252: “Uncompacted Void Content of Fine Aggregates” (2003).

(19) Norma BS 882: “Aggregates from Natural Sources for Concrete” (1992).

(20) Williams, A. T.; Wiltshire, R. J.; Thomas, M. C.: “Sand Grain Analysis-Image Processing, Textural Algorithms and Neural Nets”, Computers & Geosciences, Ed. Elsevier Science Ldt., vol. 24, nº 2 (1998), pp. 11-118.

(21) Masad, E.; Button, J. W.: “Unified Imaging Approach for Measuring Aggregate Angularity and Texture”, Computer-Aided Civil andInfrastructure Engineering, vol. 15 (2000), pp. 273-280.

(22) Wright, P. J. F.: “A Method of Measuring the Surface Texture of Aggregate”, Magazine of Concrete Research, vol. 5, nº 2 (1955), pp. 151-160.

(23) Czarnecka, E. T.; Gillott, J. E.: “A Modified Fourier Method of Shape and Surface Texture Analysis of Planar Sections of Particles”, Journal of Testing and Evaluation, JETVA, vol. 5, nº 4 (1977), pp. 292-298.

(24) Williams, A. T.; Wiltshire, R. J.; Thomas, M. C.: “Sand Grain Analysis-Image Processing, Textural Algorithms and Neural Nets”, Computers & Geosciences, Ed. Elsevier Science Ldt., vol. 24, nº 2 (1998), pp. 11-118.

(25) Maerz, N.: “Aggregate Sizing and Shape Determination Using Digital Image Processing”, Center for Aggregates Research Sixth Annual Symposium Proceedings, St. Louis, Missouri, USA (April 19-20, 1998), pp. 195-203.

(26) Persson, A.-L.: “Image Analysis of Shape and Size of Fine Aggregates”, Engineering Geology, V. 50 (1998), pp. 177–186. doi:10.1016/S0013-7952(98)00009-X

(27) Masad, E.; Button, J. W.: “Unified Imaging Approach for Measuring Aggregate Angularity and Texture”, Computer-Aided Civil and Infrastructure Engineering, vol. 15 (2000), pp. 273-280. doi:10.1111/0885-9507.00191

(28) Garboczi, E. J.; Saleh, H. H.; Livingston, R. A.: “Acquiring, Analyzing and Using Complete Three-Dimensional Aggregate Shape Information”, Proc. Aggregates, Concrete, Bases and Fines, 9th Annual Symposium, Austin, Texas, USA, in CD (april 22-25, 2001), 13 pp.

(29) Stakston, D.; Bahia, H.: “The Effect of Fine Angularity, Asphalt Content and Performance Graded Asphalts on Hot Mix Asphalt Performance”, Wisconsin Department of Transportation, WisDOT Highway Research Study 0092-45-98 (October 2003), 104 p.

(30) Erdogan, S. T.; Quiroga, P. N.; Fowler, D. W.; Saleh, H. A.; Livingston, R. A.; Garboczi, E. J.; Ketcham, P. M.; Hagedorn, J. G.; Satterfield, S. G.: “Tree-Dimensional Shape Analyses of Coarse Aggregates: New Techniques for and Preliminary Results on Several Different Coarse Aggregates and Reference Rocks”, Cem. Concr. Res., vol. 36, nº 10 (2006), pp. 1619-1627. doi:10.1016/j.cemconres.2006.04.003

(31) Garboczi, E. J.; Cheok, G. S.; Stone, W. C.: “Using LADAR to Characterize the 3-D Shape of Aggregates: Preliminary Results”, Cem. Concr. Res., vol. 36, nº 6 (2006), pp.1072-1075. doi:10.1016/j.cemconres.2006.03.017

(32) Kandhal, P. S.; Motter, J. B.; Khatri, M. A.: “Evaluation of Particle Shape and Texture: Manufactured versus Natural Sands”, National Center for Asphalt Technology Report nº 91-3, 22 p., Annual Meeting of the Transportation Research Board, Washington, DC, USA (January 1991).

(33) Zaniewski, J. P.; Rafferty, S.: “Evaluation of the Compacted Aggregate Resistance Test”, Asphalt Technology Program, Department of Civil and Environmental Engineering, Morgantown, Virginia, USA (April 2004).

(34) Prowell, B. D.; Zhang, J.; Brown, E. R.: “Aggregate Properties and the Performance of Superpave Designed Hot Mix Asphalt”, National Cooperative Highway Research Program Report 539, Transportation Research Board of the National Academies, Washington, DC (2005).

(35) Cabrera, O. A.; Bonavetti, V. L.: “Efecto del Polvo de Piedra en Hormigones Estructurales”, Proc. XXVI Jornadas Sudamericanas de Ingeniería Estructural, Montevideo, Uruguay, Tomo 4 (1993), pp. 221-232.

(36) Ferraris, C.: “Measurement of the Rheological Properties of High Performance Concrete: State of the Art Report”, Journal of Research of the National Institute of Standards and Technology, vol. 104, nº 5 (1999), pp. 461-478.

(37) Mena Ferrer, M.: “Efecto de las Puzolanas en el Concreto Fresco”, Revista IMCYC, México, nº 112, vol. 18 (1980), pp. 23-36.

(38) Domone, P. L.; Yongmo, X.; Banfill, P. F.: “Developments of the Two-Point Workability Test for HPC”, Magazine of Concrete Research, vol. 51, nº 3 (1999), pp. 171-179. doi:10.1680/macr.1999.51.3.171

(39) Norma IRAM 1548: “Agregados. Determinación de la Densidad a Granel y de los Espacios Vacíos” (1948).

(40) Norma IRAM 1679: “Cemento de Albañilería. Métodos de Ensayo” (1970).

(41) Cabrera, O. A.; Traversa, L. P.; Rahhal, V. F.: “Influencia de la Forma y Textura de los Agregados Finos en la Fluidez de los Morteros Cementíceos”, Proc. III Congreso Internacional y 17ª Reunión Técnica “Ing. José F. Colina” (2008), pp. 371-378.

(42) Wong, G. S.; Alexander, A. M.; Haskins, R.; Poole, T. S.; Malone, P. G.; Wakeley, L.: “Portland-Cement Concrete Rheology and Workability: Final Report”, Publication nº FHWA-RD-00-25, U.S. Department of Transportation, Federal Highway Administration (April 2001).

(43) Bascoy, D.: “Tecnología del Hormigón Fresco”, p. 344, Ed. Biblos, Buenos Aires, Argentina (1992).

Downloads

Published

2010-12-30

How to Cite

Cabrera, O. A., Traversa, L. P., & Ortega, N. F. (2010). Flowability in crushed sand mortar. Materiales De Construcción, 60(300), 115–130. https://doi.org/10.3989/mc.2010.50909

Issue

Section

Research Articles