Protocol for assessing the effectiveness of protective coatings for roofing slate

Authors

  • V. Cárdenes Fundación Centro Tecnológico de la Pizarra. Orense
  • J. García-Guinea Dpto. Geología. Museo Nacional Ciencias Naturales. CSIC. Madrid
  • C. Monterroso Univ Santiago de Compostela. Santiago de Compostela
  • R. De la Horra Dpto. de Estratigrafía, Instituto de Geología Económica UCM-CSIC. Madrid

DOI:

https://doi.org/10.3989/mc.2008.v58.i289-290.68

Keywords:

protocol, slate, protective products, oxidation, pyrite

Abstract


Spain is a world-wide leader in roofing slate production, quarriying more than 600,000 tons of slate of great quality and generating around 300 euros million in sales each year. However, an enormous quantity of slate plates is considered as a low quality product or discarded every year as waste. The application of protective products on roofing slate tiles helps to commercialise slate with higher oxidation rates, reducing wastes and environmental problems. The present protocol serves to evaluate the new protective products that are now used by slate producers. A combination of three technological tests is proposed here, along with a visual questionnaire to grant quality indices. Each test is oriented to clarify critical properties for the future use of the roofing slate, as follows: (i) Thermal cycles were used to determine the oxidation rate of iron sulphides; (ii) Slate behaviour in acid urban atmospheres was interpreted by exposition of slate tiles to SO2 gas; (iii) Effectiveness of the protective layer under saline corrosion and solar radiation was obtained by exposition to saline fog and UV-irradiation. Physico-chemical tests have been performed in the Technological Centre of the Slate (Orense, Spain) whereas the chemical-structural characterizations of natural, impregnated and altered slate plates were carried out by X-ray diffraction and optical and electronic microscopy in the University of Santiago de Compostela (NW Spain). The quantitative analyses of the alteration grades have been determined using a freeware program (IMAGEJ) on the scanned images of roofing slate tiles. The protocol here presented has been experienced with the more important protective slate products nowadays, i.e., siloxanes, organic resins and polyurethanes.

Downloads

Download data is not yet available.

References

(1) J. Garcia-Guinea, M. Lombardero, B. Roberts, J. Taboada, A. Peto: “Mineralogia y micro-estructura de la pizarra de techar: Comportamiento termoóptico y fisibilidad.”. Mater Construcc, Vol. 48, (1998), pp. 37-48.

(2) Silva B., B. Prieto, T. Rivas, M. J. Sanchez-Biezma, G. Paz, R. Carballal: “Rapid biological colonization of a granitic building by lichens”. Inter. Biodeter. & Biodegr., Vol. 4, (1997), pp. 263-26. doi:10.1016/S0964-8305(97)00051-6

(3) C. C. Gaylarde, L.H.G., Morton: “Deteriogenic biofilms on buildings and their control: a review”. Biofouling Vol. 141, (1999), pp. 59–74.

(4) T. H. Warscheid, J. Braams: “Biodeterioration of stone: a review”. Inter. Biodeter. & Biodegr., Vol. 46, (2000), pp 343-368. doi:10.1016/S0964-8305(00)00109-8

(5) C. Urzì, W. E. Krumbein, T. Warscheid: “On the question of biogenic colour changes of mediterranean monuments (coating - crust - microstromatolite - patina - scialbatura - skin - rock varnish)” In: Decrouez, D., Chamay, J., Zezza, F. (Eds.), Proceedings of the 2nd International Symposium on The conservations of the monuments in the Mediterranean Basin, Musee d'Art et d'Histoire Naturelle: Genève, (1992), pp. 397-420.

(6) O. Guillitte: “Bioreceptivity: a new concept for building ecology studies”. Sci. Tot. Environ. Vol. 167, (1995), pp. 215–220. doi:10.1016/0048-9697(95)04582-L

(7) M. Urrutia, J. Graña-García, R. Rodeja, F. Macias: “Procesos de oxidación de pirita en medios superficiales: potencial acidificante e interés para la recuperación de suelos de mina” Cuad. Lab. Xeol. Laxe, Vol. 11 (1987), pp. 131-145.

(8) C. Monterroso, F. Macías: “Drainage waters affected by pyrite oxidation in a coal mine in Galicia (NW Spain): Composition and mineral stability”. Sci. Tot. Environ. Vol. 216, (1998) pp. 121-132. doi:10.1016/S0048-9697(98)00149-1

(9) R. Pérez-López, J. Cama, J. M. Nieto, C. Ayora, G. R Almodóvar: “Procesos de atenuación de la oxidación de sulfuros en residuos mineros de la Faja Pirítica Ibérica”. Macla, Vol. 3, (2005), 151-152.

(10) V.P. Evangelou: “Potential microencapsulation of pyrite by artificial inducement of ferric phosphate coatings”, J. Environ. Quality, Vol. 24, Nº 3, (1995), pp. 535-542.

(11) V.P. Evangelou: “Pyrite microencapsulation technologies: Principles and potential field application”, Ecol. Engin., Vol. 17, (2001), pp. 165-178. doi:10.1016/S0925-8574(00)00156-7

(12) Y. L. Zhang, V. P. Evangelou: “Formation of ferric hydroxide – silica coatings on pyrite and its oxidation behaviour”. Soil Sci. Vol. 163 nº 1 (1998) pp 53-62. doi:10.1097/00010694-199801000-00008

(13) Z. J. Georgopoulou, K. Fytas, H. Soto, B Evangelou: “Feasibility and cost of creating an iron – phosphate coating on pyrrhotite to prevent oxidation”. Environ. Geol., Vol. 28 (nº2) (1996), pp. 61-69 doi:10.1007/s002540050078

(14) C. L. Jiang, X. H. Wang, B. K. Parekh: “Effect of sodium oleate on inhibiting pyrite oxidation”. Int. J. Miner. Proces., Vol. 48, (2000), pp. 305-318. doi:10.1016/S0301-7516(99)00045-9

(15) X. Zhang, M.J. Borda, M. A. A., Schoonen, D. R. Strongin: “Pyrite oxidation inhibition by a cross – linked lipid coating”. Geochem. Trans., Vol 4 (nº2) (2003), pp. 8-11. doi:10.1186/1467-4866-4-8

(16) D. Kargbo, G. Atallah, S. Chatterjee: “Inhibition of pyrite oxidation by a phospholipid in the presence of silicate”. Environ. Sci. Technol., Vol 38, (2004), pp. 3432-3441. doi:10.1021/es0352552

(17) S.B. Lalvani, B.A. Deneve, A. Weston: “Passivation of pyrite due to surface treatment”. Vol. 69, (1990), pp 1567-1569.

(18) Lalvani S.B., Shami M.: “Passivation of pyrite oxidation with metal cations”. J. Mater. Sci. Vol. 22, (1987), pp 3503-3507. doi:10.1007/BF01161449

(19) P. Costagliola, C. Cipriani, C.M. Delfa: “Pyrite oxidation: protection using synthetic resins”. Eur. J. Miner, Vol.9, No.1, (1997), pp. 167-174.

(20) Evangelou, V.P.: “Oxidation Prof. Silicate surface coating on iron sulphides” US PTO Patent 5.494.703, (1996) U.S. Patent.

(21) F. M. Morel, J.G. Hering: “Principles and Applications of Aquatic Chemistry”. Ed. Wiley-Interscience: New York, (1993), pp. 588

(22) T. M. Bhatti, J. M., Bigham L., Carlson O. H. Tuovinen: “Mineral Products of Pyrrothite Oxidation by Thiobacillus Ferrooxidans”. Appl. Environ. Microbiol. Vol. 59 (nº6) (1993) 1984-1990.

(23) R. Berner: “Sedimentary pyrite formation: An update”. Geochim. Cosmochim. Act. Vol 48, (1983), pp 605-615. doi:10.1016/0016-7037(84)90089-9

(24) V. Cardenes, M. Lombardero, J. Garcia-Guinea, V.Pais-Diz: “Determinación de sulfuros de hierro en pizarras para cubiertas”. Roc Maquina, Vol. 77, (2002), pp. 90-98.

(25) Garcia-Guinea J., Cardenes V., Lombardero M. & Desiloniz M.I. Determination of iron sulphides in roofing slates from the north west of Spain. Mater. Construcc. 52, (2002), pp. 55-63.

(26) V. Cárdenes, V. Pais-Diz, J. García-Guinea, F.Gómez-Fernández, “Pizarras de Techar”. En: Seminarios Soc. Esp. Miner., Vol 2, Utilización de Rocas y Minerales Industriales, (2006), pp.183-217. Ed. SEM. Alicante.

(27) Sawlowicz, Z. Pyrite framboids and their development: a new conceptual mechanism. Geol Rundsch, nº 82, (1993), pp. 148-156. doi:10.1007/BF00563277

(28) UNE-EN 12326-1: (2005). Productos de pizarra y piedra natural para tejados y revestimientos discontinuos. Parte 1: Especificación de producto. Parte 2: Métodos de ensayo.

(29) EN 13501-5: (2005). Clasificación en función del comportamiento frente al fuego de los productos de construcción y elementos para la edificación. Parte 5: Clasificación en función de datos obtenidos en ensayos de cubiertas ante la acción de un fuego exterior.

(30) UNE-EN ISO 11997-(1-2): (2007). Pinturas y barnices. Determinación de la resistencia a condiciones cíclicas de corrosión. Partes (1-2): Humedad (niebla salina) / sequedad / humedad / luz UV.

(31) UNE-EN 14147: (2004). Métodos de ensayo para la piedra natural. Determinación de la resistencia al envejecimiento por niebla salina.

(32) UNE-EN ISO 4628-1: (2004). Pinturas y barnices. Evaluación de la degradación de los recubrimientos. Designación de la intensidad, cantidad y tamaño de los tipos más comunes de defectos. (1): Introducción general y sistema de designación. (2): Evaluación del grado de ampollamiento. (3): Evaluación del grado de oxidación. (4): Evaluación del grado de agrietamiento. (5): Evaluación del grado de descamación.

(33) ASTM 4329-84 (1984). Standard Practice for Operating Light-And Water-Exposure Apparatus (Fluorescent UV Condensation Type) for Exposure of Plastics.

(34) ASTM C217-94 (2004) Standard Test Method for Weather Resistance of Slate.

(35) Rasband, W.S., ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, http://rsb.info.nih.gov/ij. 1997-2006.

Downloads

Published

2008-06-30

How to Cite

Cárdenes, V., García-Guinea, J., Monterroso, C., & De la Horra, R. (2008). Protocol for assessing the effectiveness of protective coatings for roofing slate. Materiales De Construcción, 58(289-290), 263–279. https://doi.org/10.3989/mc.2008.v58.i289-290.68

Issue

Section

Research Articles

Most read articles by the same author(s)