Materiales de Construcción, Vol 61, No 301 (2011)

Assessment of the variation of the moisture content in the Pinus pinaster Ait. using the non destructive GPR technique


https://doi.org/10.3989/mc.2010.49608

I. Rodríguez-Abad
Universidad Politécnica de Valencia, Spain

R. Martínez-Sala
Universidad Politécnica de Valencia, Spain

R. Capuz Lladró
Universidad Politécnica de Valencia, Spain

R. Díez Barra
Laboratorio de Estructuras. Instituto Nacional de Investigaciones Agrarias (INIA), Madrid, Spain

F. García-García
Universidad Politécnica de Valencia, Spain

Abstract


The moisture content variations in wood have a significant influence in wood’s physicochemical properties, as well as in its electromagnetic properties and to specific effects upon waves’ characteristics. In particular, this paper focuses on the analysis of the Ground-penetrating Radar’s (GPR) using an antenna of 1.6GHz central frequency capacity to register the velocity and the amplitude of the electromagnetic waves’ variation during the drying process of Pinus pinaster Ait timber joists. The results showed that when timber MC descends, the propagation velocity and amplitude of both the direct and the reflected wave increased. The high correlation found between the variables studied demonstrates GPR efficiency and the innovative application of this technique as a non-destructive evaluation tool for timber structures, particularly when studying its moisture content.

Keywords


Timber; Characterization; Restoration; Electric properties; Pathology

Full Text:


PDF

References


[1] Arriaga, F., Peraza, F., Esteban, M., Bobadilla, I., García, F.: Intervención en estructuras de Madera, p. 476, AITIM, Artes Gráficas Palermo S.L., Madrid, 2002.

[2] Schmalz, B., Lennartz, B., Wachsmuth, D.: “Analyses of soil water content variations and GPR attribute distributions”. Journal of Hydrology, Vol. 267, (2002), pp. 217-226. doi:10.1016/S0022-1694(02)00152-X

[3] Huisman, J.A., Snepvangers, J.J.J.C., Bouten, W., Heuvelink, G.B.M.: “Monitoring temporal development of spatial soil water content variation: comparison of ground penetrating radar and time domain reflectometry”. Vadose Zone Journal, Vol. 2, (2003), pp. 519-529. doi:10.2113/2.4.519

[4] Lunt, I.A., Hubbard, S.S., Rubin, Y.: ”Soil moisture content estimation using ground penetrating radar reflection data”. Journal of Hydrology, Vol. 307, (2005), pp. 254-269. doi:10.1016/j.jhydrol.2004.10.014

[5] Laurens, S., Balayssac, J., Rhazi, J., Arliguie, G.: “Influence of concrete relative humidity on the amplitude of Ground-Penetrating Radar (GPR) signal”. Materials and Structures, Vol. 35, (2002), pp. 198-203.

[6] Laurens, S., Balayssac, J., Rhazi, J., Klysz, G., Arliguie, G.: ”Non-destructive evaluation of concrete moisture by GPR: experimental study and direct modelling”. Materials and Structures. Vol. 38, (2005), pp. 827-832.

[7] Maierhofer, C., Leipold, S., Wiggenhausere, H.: “Investigactions of the influence of moisture and salt content on the dielectric properties of brick materials using radar”. Proceedings of the 7th International Conference on Ground Penetrating Radar, Kansas USA, (1998), pp. 477-483.

[8] Maierhofer, C., Leipold, S., Schaurich, Binda, L., Saisa, A.: “Determination of moisture distribution in the outside walls of St. Maria Rossa using radar”. Proceedings of the 7th International Conference on Ground Penetrating Radar, Kansas, USA, (1998), pp. 509-514.

[9] García, F.: Aplicaciones de la técnica geofísica de prospección por georradar en ingeniería civil y glaciología. Tesis Doctoral, Universidad Politécnica de Cataluña, Barcelona, 1997.

[10] Pérez, V.: Radar del subsuelo. Evaluación en arqueología y en patrimonio histórico-artístico. Tesis Doctoral, Universidad Politécnica de Cataluña, Barcelona, 2001.

[11] Torgovnikov, G.I.: Dielectric properties of wood and wood-based materials, Springer, Berlin Heidelberg New York, 1993

[12] Kabir, M.F., Daud, W.M., Khalid, K.B., Sidek, H.A.: “Equivalent circuit modeling of the dielectric properties of rubber wood at low frequency”. Wood Fiber Science, Vol. 32, (2000), pp. 450–457.

[13] Sahin, H., Nürgul, A.:” Dielectric properties of hardwood species at microwave frequencies”. Journal of Wood Science, Vol. 50, (2004), pp. 375-380. doi:10.1007/s10086-003-0575-1

[14] UNE-EN 13183-1:2002. Moisture content of a piece of sawn timber. Part 1: Determination by oven dry method.

[15] James, W.L., Hamill, D.W.: “Dielectric properties of Douglas-fir measured at microwave frequencies”. Forest Products Journal, Vol. 15, (1965), pp. 51–56.

[16] Tinga, W.R.: “Dielectric properties of Douglas fir at 2.45GHz”. Journal of Microwave Power, Vol. 4, (1969), pp. 161–164.

[17] James, W.L.: “Dielectric properties of wood and hardboard: variation with temperature, frequency, moisture content, and grain orientation”. USDA Forest Service Research Paper, FPL 245, (1975), pp. 1–32.

[18] James, W.L.: ”Dielectric behavior of Douglas-fir at various combinations of temperature, frequency, and moisture content”. Forest Products Journal, Vol. 27, (1977), pp. 44–48.22

[19] Peyskens, E., Pourcq, M., Stevens, M., Schalck, J.: “Dielectric properties of softwood species at microwave frequencies”. Wood Science Technology, Vol. 18, (1984), pp. 267–280. doi:10.1007/BF00353363

[20] Jain, V.K., Dubey, Y.M.: “Dielectric constant of some Indian timbers in axial direction at microwave frequencies”. J Ind Acad Wood Sci, Vol. 19, (1988), pp. 25–36.

[21] Kabir, M.F., Khalid, K.B., Daud, W. M., Aziz, S.H.A.:” Dielectric properties of rubber Wood at microwave frequencies measured with an open-ended coaxial line”. Wood and Fiber Science, Vol. 29, nº 4 (1997), pp. 319-324.

[22] Kabir, M.F., Daud, W.M., Khalid, K., Sidek, H.A.A.: “Dielectric and ultrasonic properties of rubber wood. Effect of moisture content, grain direction and frequency”. Holz Roh Werkstoff, Vol. (56), (1998), pp. 223–227.

[23] Vignote, S., Martínez, I.: Tecnología de la madera. 3ª edición revisada y ampliada, p. 687, Editorial Mundi-Prensa, Madrid, 2006.

[24] Roth, C.H., Malicki, M.A., Plagge R.: “Empirical evaluation of tHEH relationship between soil dielectric constant and volumetric water content as tHEH basis for calibrating soil moisture measurements by TDR”. Soli Sciences, Vol. 43, (1992), pp. 1-13.

[25] Topp, G.C., Davis, J.L., Annan, A.P.: “Soil water content: measurements in coaxial transmission lines”. Water Resources Research, Vol. 16,(1980), pp. 574-582. doi:10.1029/WR016i003p00574

[26] Stoffregen, H., Yaramanci, U., Zenker, T., Wessolek, G.: ”Accuracy of soil water content measurements using ground penetrating radar: comparison of ground penetrating radar and lysimeter data”. Journal of Hydrology, Vol. 267, (2002), pp. 201-206. doi:10.1016/S0022-1694(02)00150-6




Copyright (c) 2011 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es