Thermal properties of cement mortar with different mix proportions
DOI:
https://doi.org/10.3989/mc.2020.09219Keywords:
Cement mortar, Thermal conductivity, Heat capacity, Thermal diffusivityAbstract
The energy required for the heating and cooling of buildings is strongly dependant on the thermal properties of the construction material. Cement mortar is a common construction material that is widely used in buildings. The main aim of this study is to assess the thermal properties of cement mortar in terms of its thermal conductivity, heat capacity and thermal diffusivity in a wide range of grades (cement: sand ratio between 1:2 and 1:8). As there is insufficient information to predict the thermal conductivity and diffusivity of a cement mortar from its physical and mechanical properties, the relationships between thermal conductivity and diffusivity and density, compressive strength, water absorption and porosity are also discussed. Our results indicate that, for a cement mortar with a 28-day compressive strength in the range of 6–60 MPa, thermal conductivity, specific heat and thermal diffusivity are in the range of 1.5–2.7 W/(m.K), 0.87–1.04 kJ/kg.K and 0.89–1.26 (x10-6 m2/s), respectively. The scanning electron microscope (SEM) images showed that pore size varied from 18 μm to 946 μm for samples with different cement-to-sand ratios. The porosity of cement mortar has a significant effect on its thermal and physical properties. For this reason, thermal conductivity and thermal diffusivity was greater in cement mortar samples with a higher density and compressive strength.
Downloads
References
Shafigh, P.; Asadi, I.; Mahyuddin, N.B. (2018) Concrete as a thermal mass material for building applications-A review. J. Build. Eng. 19, 14-25. https://doi.org/10.1016/j.jobe.2018.04.021
Bhattacharjee, B.; Krishnamoorthy, S. (2004) Permeable porosity and thermal conductivity of construction materials. J. Mater. Civil Eng. 16 [4], 322-330. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:4(322)
Tong, X.C. (2011) Characterization methodologies of thermal management materials. In: Advanced Materials for Thermal Management of Electronic Packaging. 2011, Springer. p. 59-129. https://doi.org/10.1007/978-1-4419-7759-5_2
Zhang, W.; Min, H.; Gu, X.; Xi, Y.; Xing, Y. (2015) Mesoscale model for thermal conductivity of https://doi.org/10.1016/j.conbuildmat.2015.08.106
Kim, K.-H.; Jeon, S.-E.; Kim, J.-K.; Yang, S. (2003) An experimental study on thermal conductivity of concrete. Cem. Concr. Res 33 [3], 363-371. https://doi.org/10.1016/S0008-8846(02)00965-1
Demirboǧa, R. (2003) Influence of mineral admixtures on thermal conductivity and compressive strength of mortar. Energ. Build. 35 [2], 189-192. https://doi.org/10.1016/S0378-7788(02)00052-X
Lertwattanaruk, P.; Makul, N.; Siripattarapravat, C. (2012) Utilization of ground waste seashells in cement mortars for masonry and plastering. J Environ Manage. 111, 133-141. https://doi.org/10.1016/j.jenvman.2012.06.032 PMid:22841935
Mo, K.H.; Bong, C.S.; Alengaram, U.J.; Jumaat, M.Z.; Yap, S.P. (2017) Thermal conductivity, compressive and residual strength evaluation of polymer fibre-reinforced high volume palm oil fuel ash blended mortar. Constr. Build. Mater. 130, 113-121. https://doi.org/10.1016/j.conbuildmat.2016.11.005
Olmeda, J.; De Rojas, M.S.; Frías, M.; Donatello, S.; Cheeseman, C. (2013) Effect of petroleum (pet) coke addition on the density and thermal conductivity of cement pastes and mortars. Fuel. 107, 138-146. https://doi.org/10.1016/j.fuel.2013.01.074
Baite, E.; Messan, A.; Hannawi, K.; Tsobnang, F.; Prince, W. (2016) Physical and transfer properties of mortar containing coal bottom ash aggregates from Tefereyre (Niger). Constr Build Mater. 125, 919-926. https://doi.org/10.1016/j.conbuildmat.2016.08.117
Ruiz-Herrero, J.L.; Nieto, D.V.; López-Gil, A.; Arranz, A.; Fernández, A.; Lorenzana, A.; Merino, S.; De Saja, J.A.; Rodríguez-Pérez, M.Á. (2016) Mechanical and thermal performance of concrete and mortar cellular materials containing plastic waste. Constr Build Mater. 104, 298-310. https://doi.org/10.1016/j.conbuildmat.2015.12.005
Widodo, S.; Ma'arif, F.; Gan, B.S. (2017) Thermal Conductivity and Compressive Strength of Lightweight Mortar Utilizing Pumice Breccia as Fine Aggregate. Pro. Eng. 171, 768-773. https://doi.org/10.1016/j.proeng.2017.01.446
Kockal, N.U. (2016) Investigation about the effect of different fine aggregates on physical, mechanical and thermal properties of mortars. Constr. Build. Mater. 124, 816-825. https://doi.org/10.1016/j.conbuildmat.2016.08.008
Zhang, H. (2011) Building materials in civil engineering. Elsevier. https://doi.org/10.1533/9781845699567
Sandin, K. (1995) Mortars for Masonry and Rendering Choice and Application. In: Building Issues, Vol 7. http://lup.lub.lu.se/record/526113.
Malaysian Standard (2003) Portland cement (ordinary and rapid-hardening): Part 1. Specification (Second revision), Malaysia, MS. 522. The Department of Standards Malaysia, (2003).
ASTM C1437 (2007) Standard Test Method for Flow of Hydraulic Cement Mortar, ASTM International, West Conshohocken, PA, 2007. https://
Blázquez, C.S.; Martín, A.F.; Nieto, I.M.; García, P.C.; Pérez, L.S.S.; González-Aguilera, D. (2017) Analysis and study of different grouting materials in vertical geothermal closed-loop systems. Renew. Energy. 114, 1189-1200. https://doi.org/10.1016/j.renene.2017.08.011
Bentz, D.P.; Peltz, M.A.; Duran-Herrera, A.; Valdez, P.; Juarez, C. (2011) Thermal properties of high-volume fly ash mortars and concretes. J. Build. Phys. 34 [3], 263-275. https://doi.org/10.1177/1744259110376613
Othuman, M.A.; Wang, Y. (2011) Elevated-temperature thermal properties of lightweight foamed concrete. Constr. Build. Mater. 25 [2], 705-716. https://doi.org/10.1016/j.conbuildmat.2010.07.016
Waller, V.; De Larrard, F.; Roussel, P. (1996) Modelling the temperature rise in massive HPC structures. In: 4th International Symposium on Utilization of High-Strength/High-Performance Concrete. RILEM SARL Paris.
Lyons, A. (2014) Materials for architects and builders, Routledge, London. https://doi.org/10.4324/9781315768748
Hashemi, M.; Shafigh, P.; Karim, M.R.B.; Atis, C.D. (2018) The effect of coarse to fine aggregate ratio on the fresh and hardened properties of roller-compacted concrete pavement. Constr Build Mater. 169, 553-566. https://doi.org/10.1016/j.conbuildmat.2018.02.216
ASTM C270-19ae1 (2019) Standard Specification for Mortar for Unit Masonry, ASTM International, West Conshohocken, PA, 2019.
Yüksek, S. (2019) Mechanical properties of some building stones from volcanic deposits of mount Erciyes (Turkey). Mater. Construcc. 69 [334], e187. https://doi.org/10.3989/mc.2019.04618
Asadi, I.; Shafigh, P.; Hassan, Z.F.B.A.; Mahyuddin, N.B. (2018) Thermal conductivity of concrete-A review. J. Build. Eng. 20, 81-93. https://doi.org/10.1016/j.jobe.2018.07.002
Real, S.; Gomes, M.G.; Rodrigues, A.M.; Bogas, J.A. (2016) Contribution of structural lightweight aggregate concrete to the reduction of thermal bridging effect in buildings. Constr Build Mater. 121, 460-470. https://doi.org/10.1016/j.conbuildmat.2016.06.018
Hashemi, M., Shafigh, P., Abbasi, M. and Asadi, I. (2019) The effect of using low fines content sand on the fresh and hardened properties of roller-compacted concrete pavement. Case Studies in Construction Materials, 11, e00230. https://doi.org/10.1016/j.cscm.2019.e00230
Chung, S.-Y.; Han, T.-S.; Kim, S.-Y.; Kim, J.-H.J.; Youm, K.S.; Lim, J.-H. (2016) Evaluation of effect of glass beads on thermal conductivity of insulating concrete using micro CT images and probability functions. Cem. Concr. Compos. 65, 150-162. https://doi.org/10.1016/j.cemconcomp.2015.10.011
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read here the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.