Materiales de Construcción, Vol 58, No 291 (2008)

Alternative concrete based on alkali-activated slag


https://doi.org/10.3989/mc.2008.v58.i291.104

E. Rodríguez
Grupo Materiales Compuestos, Universidad del Valle, Cali, Colombia

S. Bernal
Grupo Materiales Compuestos, Universidad del Valle, Cali, Colombia

R. Mejía de Gutiérrez
Grupo Materiales Compuestos, Universidad del Valle, Cali, Colombia

F. Puertas
Instituto de Ciencias de la Construcción Eduardo Torroja (CSIC), Madrid, Spain

Abstract


This article reports the results of related to on the performance of concrete made with waterglass (Na2SiO3•nH2O + NaOH)-activated Colombian granulated blast furnace slag. The mechanical strength and durability properties this alkali-activated slag concrete (AAS) were compared to the properties of ordinary Portland cement concrete (OPC) with the same proportion of binder, which ranged from 340 to 512 kg per m3 of concrete. The results indicated that increasing the proportion of slag led to improvements in the properties studied.

Keywords


granulated blast furnace slag; alkali-activated slag concrete; durability

Full Text:


PDF

References


(1) Hardjito, D.; Rangan, B. V.: “Development and properties of low-calcium fly ash-bases geopolymer concrete”. Research Report GC1. Curtin University of Technology. Perth Australia. (2005).

(2) Hendriks, C. A., et al.: “Emission reduction of green house gases from the cement industry”. 4th International Conference on Green House Gas Control Technologies, Intertaken, Austria, (1998).

(3) Glukovski, V.D.: “Alkali-Earth binders and concretes produced with them”, Visheka Shkola, Kiev, USSR, (1979).

(4) Fernández-Jiménez, A; Puertas, F.: “Effect of activator mix on the hydration and strenght behavior of alkali-activated slags cements”. Advances In Cements Research, vol. 15 (2003), pp.129-136. doi:10.1680/adcr.15.3.129.36623

(5) Fernández Jiménez, A; Puertas, F.: “Setting of alkali-activated slag cement. Influence of activator nature”. Advances In Cement Research, vol. 13, 3 (2001), pp.115-121. doi:10.1680/adcr.13.3.115.39288

(6) Bakharev, T.; Sanjayan, J.G.; Cheng, Y.B.: “Effect of admixtures on properties of alkali-activated slag concrete”. Cement And Concrete Research, vol. 30 (2000), pp.1367-1374. doi:10.1016/S0008-8846(00)00349-5

(7) Puertas F., Palomo A., Fernández-Jiménez A. y Izquierdo J.D.: “Effect of superplasticizers on the behaviour and properties of alkaline cements” Advance Cement Research, vol. 15, 1 (2003), pp. 23-28. doi:10.1680/adcr.15.1.23.36730

(8) Palacios M. y Puertas F.: “Effect of superplasticizer and shrinkage-reducing admixtures on álcali-activated slag pastes and mortars”. Cement and Concrete Research, vol. 35 (2005), pp. 1358-1367. doi:10.1016/j.cemconres.2004.10.014

(9) Puertas, F.; Fernández-Jiménez, A.; Blanco-Varela, M.T.: “Pore solution in alkali-activated slag cement pastes. Relation to the composition and structure of calcium silicate hydrate”. Cement and Concrete Research, vol 34 (2004), pp. 139-148 doi:10.1016/S0008-8846(03)00254-0

(10) Fagerlund, G.: “On the capillarity of concrete”. Nordic Concrete Research N°1, Oslo, Paper N°6 (1982), 20p.

(11) Roy, D.M.: “Advances in cements/Chemically Bonded Ceramics, Ceramics Toward The 21 St Century”. Centennial International Symposium, Ceramics Society Of Japan, Tokyo, 535-551 (1991).

(12) Wang, S-D., Scrivener, K.: “Hydration products of alkali activated slag cement”. Cement and Concrete Research, vol. 25, 3 (1995), pp. 561-571. doi:10.1016/0008-8846(95)00045-E

(13) Roy, D.M.; Silsbee, M.R.: “Alkali activated materials. An overview”, Mat. Res. Soc., Symp. Proc. 245, pp.153-164 (1992).

(14) Teoreanu, I. “The interaction mechanism of blast-furnace slags with water. The role of the activating agents”. Il Cemento 2, pp. 91– 97 (1991).

(15) Shi, C.: “Early hydration and microstructure development of alkaliactivated slag cement pastes”, X Intern. Cong. Chem, Cem (Goteborg) Vol. 3, 3ii099, Trondheim, Norway. (1997).

(16) Wang S-D.; Pu, Xin-Cheng; Scrivener, K.L. y Pratt, P.L.: “Alkali activated slag cement and concrete: a review of its properties and problems”. Advances in Cement Research, vol. 24 (1995), pp.93-102.

(17) Mejía De Gutiérrez, R.; Maldonado, J.; Delvasto, S.; Puertas, F. y Fernández-Jiménez, A.: “Durability of mortars made with alkali activated slag”. 11th Int. Congress on the Chemistry of Cement, ICCC, Durban, South Africa, 1005-1012. (2003).

(18) Mejía De Gutiérrez, R.; Angrino, D.; Maldonado, J.; Delvasto, S.; Puertas, F. y Fernandez-Jimenez, A.: “Durability properties of ordinary, slag blended and alkali – activated slag cement mortars”. International Corrosion Council, Granada Spain, 575 (2002).

(19) Byfors, K., et al.: “Durability of concrete made with alkali-activated slag, 3rd International Conference on Fly Ash, Silica–fume, Slag and Natural Pozzolans in concrete”. V.M. Malhotra (Ed.), Norway, 1429-1466 (1989).

(20) Kukko, H.; Mannonen, R.: “Chemical and mechanical properties of alkali-activated blast furnace slag (F-Concrete)”, Nordic Concrete Research, Pub. N° 10510 (1982).

(21) Puertas, F.: “Cementos de escoria activados alcalinamente: Situación actual y perspectivas de futuro”. Materiales De Construcción, vol. 45 (239) (1995), pp.53-64.

(22) Bakharev, T.; Sanjayan, J.G.y Cheng, Y-B.: “Sulfate attack on alkali-activated slag concrete”. Cement and Concrete Research, vol. 32 (2002), pp. 211-216. doi:10.1016/S0008-8846(01)00659-7

(23) F. Puertas, R. M. Gutiérrez, A. Fernández-Jiménez, S. Delvasto y J. Maldonado.: “Morteros de cementos alcalinos: resistencia química al ataque por sulfatos y agua de mar”. Materiales De Construcción, vol. 51, 267 (2002), pp. 55-71.

(24) Linares, D. y Sánchez, M.: “Construction operation and preformance of a chamber of test of accelerated carbonation”. Rev. Tec. Univ. Zulia, vol. 26, 1 (2003), pp. 34-44.

(25) Steffens, A.: “Modeling carbonation for corrosion risk prediction of concrete structures”. Cement and Concrete Research, vol. 32 (2002), pp. 935-941 doi:10.1016/S0008-8846(02)00728-7

(26) Castro, A. et al.: “Relationship between results of accelerated and natural Carbonation in various Concretes”. International RILEM conference on the use of recycled materials in buildings and structures, Barcelona, España, 988-997. (2004).

(27) Mejía De Gutiérrez, R; Rodríguez, E; Rodríguez, C; Torres, J. y Delvasto, S.: “Comportamiento frente a la corrosión de concretos adicionados con metacaolín de origen nacional”. I Coloquio de Investigaciones en Materiales no Convencionales Brasil - Colombia. Cali, 1-14 (2005).

(28) Pu, X.C.; Gan, C.C.; Wang, S.D. y Yang, C.H.: “Summary reports of research on alkali-activated slag cement and concrete”. V.1-6, Chongqing Institute of Architecture and Engineering, Chongqing (1988).

(29) Bakharev, T.; Sanjayan, J.G. y Cheng, Y.B.: “Resistence of alkali-activated slag concrete to carbonation”. Cement and Concrete Research, vol. 31 (2001), pp.1277-1283. doi:10.1016/S0008-8846(01)00574-9

(30) Puertas, F.; Palacios, M. y Gil–Maroto, A.: “Carbonation process of alkali-activated cements and mortars”. 2nd Internatinal Symposium Non-traditional cement & concrete. Bílek and Kersner (eds.), (2005).

(31) Zhang, X; Wu, K.y Yan, A.: “Carbonation property of hardened binder pastes containing super-pulverized blast-furnace slag”. Cement and Concrete Composites, vol. 26 (2004). pp. 371-374. doi:10.1016/S0958-9465(03)00021-0

(32) Criado, M.; Palomo, A. Y Fernández-Jiménez, A.: “Alkali activation of fly ashes. Part 1: Effect of curing conditions on the carbonation of the reaction products”, Fuel, vol. 84 (2005). pp. 2048-2054. doi:10.1016/j.fuel.2005.03.030




Copyright (c) 2008 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es