The effect of recycled concrete powder (RCP) from precast concrete plant on fresh and mechanical properties of cementitious pastes

Authors

DOI:

https://doi.org/10.3989/mc.2023.351923

Keywords:

Recycled Concrete Powder, Hydration, Rheology, Compressive strength, Sustainability

Abstract


This study aims to evaluate the effect of RCP from a precast concrete plant on rheological and mechanical properties of cementitious pastes. In the study, Portland cement was replaced by RCP in 10, 20, and 30% (in mass). The hydration kinects of cement with RCP was studied through isothermal calorimetry. The fresh properties were assessed using mini-slump test and rotational rheometry. The mechanical properties were evaluated through compression tests and the microstruture was studied using Scanning Electron Microscopy. RCP reduces fluidity of the pastes, by increasing both yield stress and plastic viscosity. The addition of RCP accelerates the hydration of cement, while reducing the released heat. RCP also reduces the compressive strength and elastic modulus of the pastes. The use of RCP as partial substitute for cement is viable, due to its size distribution and specific surface area.

Downloads

Download data is not yet available.

References

Rahla, K.M.; Mateus, R.; Bragança, L. (2019) Comparative sustainability assessment of binary blended concretes using Supplementary Cementitious Materials (SCMs) and Ordinary Portland Cement (OPC). J. Clean. Prod. 220, 445-459. https://doi.org/10.1016/j.jclepro.2019.02.010

Ashish, D.K. (2019) Concrete made with waste marble powder and supplementary cementitious material for sustainable development. J. Clean. Prod. 211, 716-729. https://doi.org/10.1016/j.jclepro.2018.11.245

Lothenbach, B.; Scrivener, K.; Hooton, R.D. (2011) Supplementary cementitious materials. Cem. Concr. Res. 41 [12], 1244-1256. https://doi.org/10.1016/j.cemconres.2010.12.001

Juenger, M.C.G.; Snellings, R.; Bernal, S.A. (2019) Supplementary cementitious materials: New sources, characterization, and performance insights. Cem. Concr. Res. 122, 257-273. https://doi.org/10.1016/j.cemconres.2019.05.008

de Matos, P.R.; Sakata, R.D.; Onghero, L.; Uliano, V.G.; de Brito, J.; Campos, C.E.M.; Gleize, P.J.P. (2021) Utilization of ceramic tile demolition waste as supplementary cementitious material: An early-age investigation. J. Build. Eng. 38, 102187. https://doi.org/10.1016/j.jobe.2021.102187

Suraneni, P.; Hajibabaee, A.; Ramanathan, S.; Wang, Y.; Weiss, J. (2019) New insights from reactivity testing of supplementary cementitious materials. Cem. Concr. Compos. 103, 331-338. https://doi.org/10.1016/j.cemconcomp.2019.05.017

Menegaki, M.; Damigos, D. (2018) A review on current situation and challenges of construction and demolition waste management. Curr. Opin. Green Sustain. Chem. 13, 8-15. https://doi.org/10.1016/j.cogsc.2018.02.010

Li, Y.; Zhang, X.; Ding, G.; Feng, Z. (2016) Developing a quantitative construction waste estimation model for building construction projects. Resour. Conserv. Recycl. 106, 9-20. https://doi.org/10.1016/j.resconrec.2015.11.001

Wu, H.; Yang, D.; Xu, J.; Liang, C.; Ma, Z. (2021) Water transport and resistance improvement for the cementitious composites with eco-friendly powder from various concrete wastes. Constr. Build. Mater. 290, 123247. https://doi.org/10.1016/j.conbuildmat.2021.123247

Wang, H.; Wang, L.; Shen, W.; Cao, K.; Sun, L.; Wang, P.; Cui, L. (2022) Compressive strength, hydration and pore structure of alkali-activated slag mortars integrating with recycled concrete powder as binders. KSCE J. Civ. Eng. 26, 795-805. https://doi.org/10.1007/s12205-021-0406-1

Liu, C.; Liu, H.; Wu, J. (2022) Effect of recycled mixed powder on the mechanical properties and microstructure of concrete. J. Renew. Mater. 10 [5], 1397-1414. https://doi.org/10.32604/jrm.2022.018386

Tang, Q.; Ma, Z.; Wu, H.; Wang, W. (2020) The utilization of eco-friendly recycled powder from concrete and brick waste in new concrete: A critical review. Cem. Concr. Compos. 114, 103807. https://doi.org/10.1016/j.cemconcomp.2020.103807

Likes, L.; Markandeya, A.; Haider, M.M.; Bollinger, D.; McCloy, J.S.; Nassiri, S. (2022) Recycled concrete and brick powders as supplements to Portland cement for more sustainable concrete. J. Clean. Prod. 364, 132651. https://doi.org/10.1016/j.jclepro.2022.132651

Rangel, C.S.; Toledo Filho, R.D.; Amario, M.; Pepe, M.; de Castro Polisseni, G.; Puente de Andrade, G. (2019) Generalized quality control parameter for heterogenous recycled concrete aggregates: A pilot scale case study. J. Clean. Prod. 208, 589-601. https://doi.org/10.1016/j.jclepro.2018.10.110

Oliveira, T.C.F.; Dezen, B.G.S.; Possan, E. (2020) Use of concrete fine fraction waste as a replacement of Portland cement. J. Clean. Prod. 273, 123126. https://doi.org/10.1016/j.jclepro.2020.123126

Oh, D.; Noguchi, T.; Kitagaki, R.; Choi, H. (2021) Proposal of demolished concrete recycling system based on performance evaluation of inorganic building materials manufactured from waste concrete powder. Renew. Sust. Energ. Rev. 135, 110147. https://doi.org/10.1016/j.rser.2020.110147

Oksri-Nelfia, L.; Mahieux, P.Y.; Amiri, O.; Turcry, P.; Lux, J. (2016) Reuse of recycled crushed concrete fines as mineral addition in cementitious materials. Mater. Struct. 49, 3239-3251. https://doi.org/10.1617/s11527-015-0716-1

Cantero, B.; Bravo, M.; de Brito, J.; Del Bosque, I.F.S.; Medina, C. (2022) The influence of fly ash on the mechanical performance of cementitious materials produced with recycled cement. Appl. Sci. 12 [4], 12042257. https://doi.org/10.3390/app12042257

Deng, X.; Guo, H.; Tan, H.; He, X.; Zheng, Z.; Su, Y.; Yang, J. (2021) An accelerator prepared from waste concrete recycled powder and its effect on hydration of cement-based materials. Constr. Build. Mater. 296, 123767. https://doi.org/10.1016/j.conbuildmat.2021.123767

Chen, X.; Li, Y.; Bai, H.; Ma, L. (2021) Utilization of recycled concrete powder in cement composite: Strength, microstructure and hydration characteristics. J. Renew. Mater. 9 [12], 2189-2208. https://doi.org/10.32604/jrm.2021.015394

Hou, S.; Xiao, J.; Duan, Z.; Ma, G. (2021) Fresh properties of 3D printed mortar with recycled powder. Constr. Build. Mater. 309, 125186. https://doi.org/10.1016/j.conbuildmat.2021.125186

Kim, J.; Jang, H. (2022) Closed-loop recycling of C&D waste: Mechanical properties of concrete with the repeatedly recycled C&D powder as partial cement replacement. J. Clean. Prod. 343, 130977. https://doi.org/10.1016/j.jclepro.2022.130977

Ma, Z.; Yao, P.; Yang, D.; Shen, J. (2021) Effects of fire-damaged concrete waste on the properties of its preparing recycled aggregate, recycled powder and newmade concrete.J. Mater. Res. Technol. 15, 1030-1045. https://doi.org/10.1016/j.jmrt.2021.08.116

Xiao, J.; Ma, Z.; Sui, T.; Akbarnezhad, A.; Duan, Z. (2018) Mechanical properties of concrete mixed with recycled powder produced from construction and demolition waste. J. Clean. Prod. 188, 720-731. https://doi.org/10.1016/j.jclepro.2018.03.277

Mehdizadeh, H.; Cheng, X.; Mo, K.H.; Ling, T.C. (2022) Upcycling of waste hydrated cement paste containing high-volume supplementary cementitious materials via CO2 pre-treatment. J. Build. Eng. 52, 104396. https://doi.org/10.1016/j.jobe.2022.104396

Horsakulthai, V. (2021) Effect of recycled concrete powder on strength, electrical resistivity, and water absorption of self-compacting mortars. Case Stud. Constr. 15, e00725. https://doi.org/10.1016/j.cscm.2021.e00725

Letelier, V.; Tarela, E.; Muñoz, P.; Moriconi, G. (2017) Combined effects of recycled hydrated cement and recycled aggregates on the mechanical properties of concrete. Constr. Build. Mater. 132, 365-375. https://doi.org/10.1016/j.conbuildmat.2016.12.010

Zhang, J.; Tan, H.; He, X.; Zhao, R.; Yang, J.; Su, Y. (2021) Nano particles prepared from hardened cement paste by wet grinding and its utilization as an accelerator in Portland cement. J. Clean. Prod. 283, 124632. https://doi.org/10.1016/j.jclepro.2020.124632

Yang, J.; Zeng, L.; Su, Z.; He, X.; Su, Y.; Zhao, R.; Gan, X. (2020) Wet-milling disposal of autoclaved aerated concrete demolition waste - A comparison with classical supplementary cementitious materials. Adv. Powder Technol. 31 [9], 3736-3746. https://doi.org/10.1016/j.apt.2020.07.016

Prošek, Z.; Trejbal, J.; Nežerka, V.; Goliáš, V.; Faltus, M.; Tesárek, P. (2020) Recovery of residual anhydrous clinker in finely ground recycled concrete. Resour. Conserv. Recycl. 155, 104640. https://doi.org/10.1016/j.resconrec.2019.104640

He, Z.; Han, X.; Zhang, M.; Yuan, Q.; Shi, J.; Zhan, P. (2022) A novel development of green UHPC containing waste concrete powder derived from construction and demolition waste. Powder Technol. 398, 117075. https://doi.org/10.1016/j.powtec.2021.117075

He, X.; Zheng, Z.; Yang, J.; Su, Y.; Wang, T.; Strnadel, B. (2020) Feasibility of incorporating autoclaved aerated concrete waste for cement replacement in sustainable building materials. J. Clean. Prod. 250, 119455. https://doi.org/10.1016/j.jclepro.2019.119455

Sun, C.; Chen, L.; Xiao, J.; Liu, Q.; Zuo, J. (2021) Low-Carbon and fundamental properties of eco-efficient mortar with recycled powders. Materials 14 [24], 7503. https://doi.org/10.3390/ma14247503

Wu, H.; Xu, J.; Yang, D.; Ma, Z. (2021) Utilizing thermal activation treatment to improve the properties of waste cementitious powder and its newmade cementitious materials. J. Clean. Prod. 322, 129074. https://doi.org/10.1016/j.jclepro.2021.129074

ABNT (2018). NBR 16697: Cimento portland - requisitos. ABNT, Rio de Janeiro.

Kaliyavaradhan, S.K.; Li, L.; Ling, T.-C. (2022) Response surface methodology for the optimization of CO2 uptake using waste concrete powder. Constr. Build. Mater. 340, 127758. https://doi.org/10.1016/j.conbuildmat.2022.127758

Li, X.; Lv, X.; Zhou, X.; Meng, W.; Bao, Y. (2022) Upcycling of waste concrete in eco-friendly strain-hardening cementitious composites: Mixture design, structural performance, and life-cycle assessment. J. Clean. Prod. 330, 129911. https://doi.org/10.1016/j.jclepro.2021.129911

ABNT (2012). NBR NM18: Cimento portland - análise química - determinação de perda ao fogo. abnt, rio de janeiro.

ASTM (2019). ASTM C204: Standard test methods for fineness of hydraulic cement by air-permeability apparatus. ASTM: West Conshohocken, PA, USA, 2019.

ABNT (2019). NBR7215: Cimento portland - determinação da resistência à compressão de corpos de prova cilíndricos. ABNT, Rio de Janeiro.

Tinoco, M.P.; Gouvêa, L.; de Cássia Magalhães Martins, K.; Dias Toledo Filho, R.; Aurelio Mendoza Reales, O. (2023) The use of rice husk particles to adjust the rheological properties of 3D printable cementitious composites through water sorption. Constr. Build. Mater. 365, 130046. https://doi.org/10.1016/j.conbuildmat.2022.130046

ASTM (2022). ASTM C469/C469M-22: Standard test method for static modulus of elasticity and poisson's ratio of concrete in compression. ASTM, West Conshohocken.

Prošek, Z.; Nežerka, V.; Hlůžek, R.; Trejbal, J.; Tesárek, P.; Karra'a, G. (2019) Role of lime, fly ash, and slag in cement pastes containing recycled concrete fines. Constr. Build. Mater. 201, 702-714. https://doi.org/10.1016/j.conbuildmat.2018.12.227

ASTM (2022). ASTM C618-22: Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. ASTM, West Conshohocken.

Gao, Y.; Cui, X.; Lu, N.; Hou, S.; He, Z.; Liang, C. (2022) Effect of recycled powders on the mechanical properties and durability of fully recycled fiber-reinforced mortar. J. Build. Eng. 45, 103574. https://doi.org/10.1016/j.jobe.2021.103574

Real, S.; Bogas, J.A.; Carriço, A.; Hu, S. (2021) Mechanical characterisation and shrinkage of thermoactivated recycled cement concrete. Appl. Sci. 11 [6], 11062454. https://doi.org/10.3390/app11062454

Shen, P.; Sun, Y.; Liu, S.; Jiang, Y.; Zheng, H.; Xuan, D.; Lu, J.; Poon, C.S. (2021) Synthesis of amorphous nano-silica from recycled concrete fines by two-step wet carbonation. Cem. Concr. Res. 147, 106526. https://doi.org/10.1016/j.cemconres.2021.106526

Liu, M.; Wu, H.; Yao, P.; Wang, C.; Ma, Z. (2022) Microstructure and macro properties of sustainable alkali-activated fly ash mortar with various construction waste fines as binder replacement up to 100%. Cem. Concr. Compos. 134, 104733. https://doi.org/10.1016/j.cemconcomp.2022.104733

Qin, L.; Gao, X. (2019) Recycling of waste autoclaved aerated concrete powder in Portland cement by accelerated carbonation. Waste Manage. 89, 254-264. https://doi.org/10.1016/j.wasman.2019.04.018 PMid:31079738

Sui, Y.; Ou, C.; Liu, S.; Zhang, J.; Tian, Q. (2020) Study on properties of waste concrete powder by thermal treatment and application in mortar.Appl. Sci. 10 [3], 10030998. https://doi.org/10.3390/app10030998

Chen, X.; Li, Y.; Zhu, Z.; Ma, L. (2022) Evaluation of waste concrete recycled powder (WCRP) on the preparation of low-exothermic cement. J. Build. Eng. 53, 104511. https://doi.org/10.1016/j.jobe.2022.104511

Li, S.; Gao, J.; Li, Q.; Zhao, X. (2021) Investigation of using recycled powder from the preparation of recycled aggregate as a supplementary cementitious material. Constr. Build. Mater. 267, 120976. https://doi.org/10.1016/j.conbuildmat.2020.120976

Ma, Z.; Shen, J.; Wu, H.; Zhang, P. (2022) Properties and activation modification of eco-friendly cementitious materials incorporating high-volume hydrated cement powder from construction waste. Constr. Build. Mater. 316, 125788. https://doi.org/10.1016/j.conbuildmat.2021.125788

Ge, Z.; Gao, Z.; Sun, R.; Zheng, L. (2012) Mix design of concrete with recycled clay-brick-powder using the orthogonal design method. Constr. Build. Mater. 31, 289-293. https://doi.org/10.1016/j.conbuildmat.2012.01.002

Moreno-Juez, J.; Vegas, I.J.; Frías Rojas, M.; Vigil de la Villa, R.; Guede-Vázquez, E. (2021) Laboratory-scale study and semi-industrial validation of viability of inorganic CDW fine fractions as SCMs in blended cements. Constr. Build. Mater. 271, 121823. https://doi.org/10.1016/j.conbuildmat.2020.121823

Wang, T.; He, X.; Yang, J.; Zhao, H.; Su, Y. (2020) Nano-treatment of autoclaved aerated concrete waste and its usage in cleaner building materials. Journal of Wuhan University of Technology-Mater. Sci. Ed. 35, 786-793. https://doi.org/10.1007/s11595-020-2321-6

Wang, L.; Wang, J.; Wang, H.; Fang, Y.; Shen, W.; Chen, P.; Xu, Y. (2022) Eco-friendly treatment of recycled concrete fines as supplementary cementitious materials. Constr. Build. Mater. 322, 126491. https://doi.org/10.1016/j.conbuildmat.2022.126491

Liu, X.; Liu, L.; Lyu, K.; Li, T.; Zhao, P.; Liu, R.; Zuo, J.; Fu, F.; Shah, S.P. (2022) Enhanced early hydration and mechanical properties of cement-based materials with recycled concrete powder modified by nano-silica. J. Build. Eng. 50, 104175. https://doi.org/10.1016/j.jobe.2022.104175

Dun, Z.; Wang, M.; Ren, L.; Dun, Z. (2021) Tests research on grouting materials of waste-concrete-powder cement for goaf ground improvement. Adv. Mater. Sci. Eng. 2021, 9598418. https://doi.org/10.1155/2021/9598418

Singh, A.; Arora, S.; Sharma, V.; Bhardwaj, B. (2019) Workability retention and strength development of self-compacting recycled aggregate concrete using ultrafine recycled powders and silica fume. J. Hazard. Toxic Radioact. Waste 23 [4], 04019016. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000456

Liang, G.; Liu, T.; Li, H.; Wu, K. (2022) Shrinkage mitigation, strength enhancement and microstructure improvement of alkali-activated slag/fly ash binders by ultrafine waste concrete powder. Compos. B Eng. 231, 109570. https://doi.org/10.1016/j.compositesb.2021.109570

Tang, Y.; Xiao, J.; Zhang, H.; Duan, Z.; Xia, B. (2022) Mechanical properties and uniaxial compressive stress-strain behavior of fully recycled aggregate concrete. Constr. Build. Mater. 323, 126546. https://doi.org/10.1016/j.conbuildmat.2022.126546

Wang, D.; Shi, C.; Farzadnia, N.; Shi, Z.; Jia, H.; Ou, Z. (2018) A review on use of limestone powder in cement-based materials: Mechanism, hydration and microstructures. Constr. Build. Mater. 181, 659-672. https://doi.org/10.1016/j.conbuildmat.2018.06.075

Benachour, Y.; Davy, C.A.; Skoczylas, F.; Houari, H. (2008) Effect of a high calcite filler addition upon microstructural, mechanical, shrinkage and transport properties of a mortar. Cem. Concr. Res. 38 [6], 727-736. https://doi.org/10.1016/j.cemconres.2008.02.007

Bogas, J.A.; Carriço, A.; Pereira, M.F.C. (2019) Mechanical characterization of thermal activated low-carbon recycled cement mortars. J. Clean. Prod. 218, 377-389. https://doi.org/10.1016/j.jclepro.2019.01.325

Zhang, H.; Xiao, J.; Tang, Y.; Duan, Z.; Poon, C. (2022) Long-term shrinkage and mechanical properties of fully recycled aggregate concrete: Testing and modelling. Cem. Concr. Compos. 130, 104527. https://doi.org/10.1016/j.cemconcomp.2022.104527

Wu, Y.; Mehdizadeh, H.; Mo, K.H.; Ling, T.C. (2022). High-temperature CO2 for accelerating the carbonation of recycled concrete fines. J. Build. Eng. 52, 104526. https://doi.org/10.1016/j.jobe.2022.104526

Caneda-Martínez, L.; Monasterio, M.; Moreno-Juez, J.; Martínez-Ramírez, S.; García, R.; Frías, M. (2021) Behaviour and properties of eco-cement pastes elaborated with recycled concrete powder from construction and demolition wastes. Materials 14 [5], 1299. https://doi.org/10.3390/ma14051299 PMid:33800479 PMCid:PMC7962962

Real, S.; Carriço, A.; Bogas, J.A.; Guedes, M. (2020) Influence of the treatment temperature on the microstructure and hydration behavior of thermoactivated recycled cement. Materials. 13 [18], 3937. https://doi.org/10.3390/ma13183937 PMid:32899578 PMCid:PMC7558280

Published

2023-11-03

How to Cite

Rocha, J. H. A., Tinoco, M. P. ., & Toledo Filho, R. D. (2023). The effect of recycled concrete powder (RCP) from precast concrete plant on fresh and mechanical properties of cementitious pastes. Materiales De Construcción, 73(352), e325. https://doi.org/10.3989/mc.2023.351923

Issue

Section

Research Articles