Materiales de Construcción, Vol 64, No 315 (2014)

A review on alkaline activation: new analytical perspectives


https://doi.org/10.3989/mc.2014.00314

A. Palomo
Instituto de Ciencias de la Construcción Eduardo Torroja IETcc–CSIC, Spain

P. Krivenko
Kiev National University of Civil Engineering and Architecture, Ukraine

I. Garcia-Lodeiro
Instituto de Ciencias de la Construcción Eduardo Torroja IETcc–CSIC, Spain

E. Kavalerova
Kiev National University of Civil Engineering and Architecture, Ukraine

O. Maltseva
Instituto de Ciencias de la Construcción Eduardo Torroja IETcc–CSIC, Spain

A. Fernández-Jiménez
Instituto de Ciencias de la Construcción Eduardo Torroja IETcc–CSIC, Spain

Abstract


For many years now the idea of including alkalis in a Portland cement matrix has been regarded as a daft or inexcusably erroneous proposition: despite its absurdity, that opinion has been widely accepted as a basic premise by the scientific and technical community working in the area of the chemistry of cement. In 1957 Glukhovsky proposed a working hypothesis in which he established a close relationship between alkalis and cementitious materials. That hypothesis has become consolidated and has served as a basis for developing a new type of binders, initially called “alkaline cements”. The present paper reviews the most significant theoretical interpretations of the role played by alkalis in the formation of the “stony” structure of cement. It ends with a broad overview of the versatility of this type of materials for industrial applications and a discussion of the possibility of building on the existing legislation to meet the need for the future regulation of alkaline cement and concrete manufacture.

Keywords


Alkali activation; Aluminosilicates; Cements; C‑S‑H gel; N‑A‑S‑H gel, Geopolymers; Hybrid binder

Full Text:


HTML PDF XML

References


1. Malinowski, R. (1982) Ancient mortars and concretes: aspect of their durability. History of Technology. 7, 9–101.

2. Malinowski, R.; Stalkine, A.; Ben Yair, M. (1961) Durability of Roman mortars and concretes for hydraulic structures at Caesarea and Tiberias. Proceed. Int. Symp. On Durability of Concret. 1–14 (Prague).

3. Malinowski, R. (1979) Concrete and mortars in ancient aqueducts. Concrete International. 1, 66–67.

4. Malinowski, R. (1979) Betontechnische Problemlosung bei antiken Wasserbauten. Leichtweiss Institut, Braunschweig, Germany, Mitteilungeng. 64, 7–12.

5. Langton, C.A.; Roy, D.M. (1984) Longevity of borehole and shaft sealing materials: characterization of ancient cement-based building materials. Materials Research Society Symposium Proceedings. 26, 546–549.

6. Davidovits, J. (1988) Ancient and modern concretes: what is the real difference? Concrete International. 9, 23–29.

7. Glukhovsky, V.D. (1989) Ancient, Modern and Future Concretes. Proceed. 2nd International Seminar. 53–62 (Gothenburg, Sweden).

8. Purdon, A. (1940) The action of alkalis on blast furnace slag. Journal of the Society of Chemical Industry. 59, 191–202.

9. Glukhovsky, V.D. (1957) Soil silicate-based products and structures. Gosstroiizdat Publish. Kiev, USSR.

10. Davidovits, J. (2008) Geopolymer. Chemistry and Applications. Institute Geopolymere, Saint-Quentin, France. PMCid:PMC2751601

11. Shi, C.; Krivenko, P.V.; Roy, D. (2006) Alkali-activated cements and concretes. Ed. Taylor & Francis.

12. Provis, J.; van Deventer, J.S.J. (2009) Geopolymers, structure, processing, properties and industrial applications. Edited by J. Provis and J.S.J. van Deventer, Woodhead Publishing Limited, ISBN 978-1-84569-449-4.

13. Provis, J.; van Deventer, J.S.J. (2014) Alkali activated Materials. State of the art Report. RILEM TC 224-AAM, Springer ISBN 978-94-007-7671-5. http://dx.doi.org/10.1007/978-94-007-7672-2

14. Barrer, R. (1982) Hydrothermal chemistry of zeolites. London Academic Press.

15. Breck, D. (1974) Zeolite molecular sieves. J. Wilet & Sons, New York.

16. Dyer, S.A. (1988) An Introduction to zeolite Molecular Sieves. J. Wiley & Sons, New York.

17. Krivenko, P. (1986) Synthesis of cementitious materials of the Me2O-MeO-Me2O3-SiO2-H2O system with required properties. DSc(Eng) Degree Thesis, KISI Publis. Kiev, USSR.

18. Ginzburg, I.J.; Rukavishikova, I.A. (1951) Minerals of the ancient zone of weathering of the Ural Mountains. Moscow, USSR.

19. Glukhovsky, V.; Starchenskaya, E; and Krivenko, P. (1969) Studies on formation of silicates in mixes of clays, quartz sand and sodium carbonate. Ukrainian Chemical Jornal. 35 [4], 65–68.

20. Skurchinskaya, Zh. (1973) Synthesis of natural minerals analogues in order to obtain an artificial stone. PhD Thesis, Institute for civil Engineering, Kiev, Ukraine.

21. Skurchinskaya, Zh. (1994) Progress in alkaline cements. Ed. Krivenko P. Proceedings of the 1st Inter. Conf. Alkaline cements and Concretes. 271–298 (Kiev, Ukraine).

22. Krivenko, P. (1994) Progress in alkaline cements. Ed. Krivenko P. Proceedings of the 1st Inter. Conf. Alkaline cements and Concretes. 11–129 (Kiev, Ukraine).

23. Krivenko, P.; and Kovalchuk, G.Y. (2007) Directed synthesis of alkaline alumiosilicate minerals in a geocement matrix. J. Mater SCI. 42, 2944–2952. http://dx.doi.org/10.1007/s10853-006-0528-3

24. Kühl, H. (1930) Zementchemie. Berlin, Germany. Verlag Technik, Band III; 1958 or Zement 19.

25. Chassevent, L. (1937) 17. Cong. Chem. Ind. 147 (Paris).

26. Feret, R. (1939) Slags for the manufacture of cement. Rev. Mater. Constr. Tr. Publications. 1–145.

27. Davidovits, J. (1981) Synthetic mineral polymer compound of the silicoaluminates family and preparation progress. US Patent. 4, 472.

28. Palomo, A.; Grutzeck, M. W; Blanco, M.T (1999) Alkali-activated fly ashes - A cement for the future. Cem. Concr. Res. 29 [8], 1323–1329. http://dx.doi.org/10.1016/S0008-8846(98)00243-9

29. Taylor, H.F.W. (1990) Cement Chemistry. Academic Press Ltd. ISBN 0-12-683900-X.

30. Caijun, Shi; Fernández-Jiménez, A.; Palomo, A. (2011) New cements for the 21st century. The pursuit of an alternative to portland cement. Cem. Concr. Res. 41, 750–763. http://dx.doi.org/10.1016/j.cemconres.2011.03.016

31. Wu, X.; Roy, D.M.; Langton, C.A. (1983) Early stage hydration of slag-cement. Cem. Concr. Res. 13, 277–286. http://dx.doi.org/10.1016/0008-8846(83)90111-4

32. Wang, S.D; Pu, X.C.; Scrivener, K.L.; Pratt, P.L. (1995) Alkali-Activated Slag: a Review of Properties and Problems. Cem. Concr. Res. 17 [27], 93–102. http://dx.doi.org/10.1680/adcr.1995.7.27.93

33. Puertas, F. (1995) Cementos de escorias activadas alcalinamente: Situación actual y perspectivas de futuro. Mater. Construcc. 45 [239], 53–64. http://dx.doi.org/10.3989/mc.1995.v45.i239.553

34. Fernández-Jiménez, A. (2000) Cementos de escorias activadas alcalinamante: influencia de las variables y modelización del proceso. PhD Thesis, Universidad Autónoma de Madrid, Spain.

35. Bakharev, T.; Sanjayan, J.G; Cheng, Y.B. (2000) Effect of admixtures on properties of alkali-activated slag concrete. Cem. Concr. Res. 30, 1367–1374. http://dx.doi.org/10.1016/S0008-8846(00)00349-5

36. Duxson, P.; Fernández-Jiménez, A.; Provis, J.L.; Lukey, G.C.; Palomo, A.; van Deventer, J.S.J. (2007) Geopolymer technology: The current state of the art. J. Mater. Sci. 42, 2917–2933. http://dx.doi.org/10.1007/s10853-006-0637-z

37. Palomo, A.; Alonso, S.; Fernández-Jiménez, A.; Sobrados, I.; and Sanz, J. (2004) Alkaline activation of fly ashes. A NMR study of the reaction products. J. Am. Ceram. Soc. 87 [6], 1141–1145. 39, Yip, C.K.; Lukey, G.C.; Deventer, J.S.J. (2005) The coexistence of geopolymeric and calcium silicate hydrate at the early stage of alkaline activation. Cem. Concr. Res. 35, 1688–1697.

38. Alonso, S.; Palomo, A. (2001) Alkaline activation of metakaolin-calcium hydroxide solid mixtures: Influence of temperature, activator concentration and metakaolin /Ca(OH)2 ratio. Materials Letters. 47, 55–62. http://dx.doi.org/10.1016/S0167-577X(00)00212-3

40. Palomo, A.; Fernández-Jiménez, A.; Kovalchuk, G.; Ordo-ez, L.M.; and Naranjo, M.C. (2007) OPC-Fly Ash cementitious system. Study of the gel binders produced during alkaline hydration. J. Mater. Sci. 42, 2958–2966. http://dx.doi.org/10.1007/s10853-006-0585-7

41. Garcia-Lodeiro, I.; Fernández-Jiménez, A.; Palomo, A. (2013) Hydration kinetics in hybrid binders: Early reaction Stages. Cem. Concr. Comp. 39, 82–92. http://dx.doi.org/10.1016/j.cemconcomp.2013.03.025

42. Garcia-Lodeiro, I.; Fernández-Jiménez, A.; Palomo, A. (2013) Variation in hybrid cements over time. Alkaline activation of fly ash–portland cement blends. Cem. Concr. Res. 52, 112–122. http://dx.doi.org/10.1016/j.cemconres.2013.03.022

43. Puertas, F.; Fernández-Jiménez, A. (2003). Mineralogical and microestructural characterization of alkali-activated fly ash/slag pastes Cem. Concr. Res. 25 [3], 287–292. http://dx.doi.org/10.1016/S0958-9465(02)00059-8

44. Higuera, I.; Varga, C.; Palomo, J.G.; Gil-Maroto, A.; Vázquez, T.; Puertas, F. (2012). Mechanical behaviour of alkali-activated blast furnace slag-activated metakaolin blended pastes. Statistical study. Mater Construcc, 62 [306], 163–181.

45. Bernal S.A.; Mejía de Gutierrez R.; Ruíz F.; Qui-ones H.; Provis J.L. (2012). High-temperature performance of mortars and concretes based on alkali-actiavated slag/metakaolin blends. Mater Construcc, 62, 308, 471–488. http://dx.doi.org/10.3989/mc.2012.01712

46. Mejía J.M.; Mejía de Gutierrez R.; Puertas F. (2013). Rice husk ash as a source of silica in alkali-activated fly ash and granulated blast furnace slag systems. Mater Construcc. 63 [311], 361–375.

47. Mostafa, N.Y.; El-Hemaly, S.A.S.; Al-Wakeel, E.I.; El-Korashy, S.A.; Brown, P.W. (2001) Characterization and evaluation of the hydraulic activity of water-cooled slag and air-cooled slag. Cem. Concr. Res. 31, 899–904. http://dx.doi.org/10.1016/S0008-8846(01)00497-5

48. Li, D.; Xu, Z.; Luo, Z.; Pan, Z.; Lin, C. (2002) The activation and hydration of glassy cementitious materials. Cem. Concr. Res. 32, 1145–1152. http://dx.doi.org/10.1016/S0008-8846(02)00755-X

49. Swamy, R.N.; Bouikni, A. (1990) Some engineering properties of slag concrete as influenced by mix proportioning and curing. ACI Mater. J. 87, 210–220.

50. Pal, S.C.; Mukherjee, A.; Pathak, S.R. (2003) Investigation of hydraulic activity of ground granulated blast furnace slag in concrete. Cem. Concr. Res. 33, 1481–1486. http://dx.doi.org/10.1016/S0008-8846(03)00062-0

51. Chao, Li; Henghu, Sun; Longtu, Li. (2010) A review: The comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cements. Cem. Concr. Res. 40, 1341–1349. http://dx.doi.org/10.1016/j.cemconres.2010.03.020

52. Glukhovsky, V. (1994) Ancient, Modern and Future Concretes. First Inter. Conf. Alkaline Cements and Concretes. 1, 1–8 (Kiev, Ukraine).

53. Fernández-Jiménez, A.; Puertas, F.; Sobrados, I.; Sanz, J. (2003) Structure of calcium silicate hydrate formed in alkaline activated slag. Influence of the type of alkaline activator. J. Am. Ceram. Soc. 86 [8], 1389–1394. http://dx.doi.org/10.1111/j.1151-2916.2003.tb03481.x

54. Glasser, F.P. (1990) Cements from micro to macrostructure. Br. Ceram. Trans. J. 89 [6], 192–202.

55. Roy, A.; Schilling, P.J.; Eaton, H.C. (1994) Activation of Ground Blast-Furnace slag by Alkali-Metal and Alkaline-Earth Hydroxides. J. Am. Ceram. Soc. 75 [12], 3233–3240. http://dx.doi.org/10.1111/j.1151-2916.1992.tb04416.x

56. Cheng, Q.H.; et al. (1992) Strength and Microstructural Properties of Waterglass Activated Slag. Mater. Res. Soc. Symp. Proc. 245, 49–54.

57. Fernández-Jiménez, A.; Puertas, F.; Fernández-Carrasco, L. (1996) Alkaline-sulphate activation processes of a Spanish blast furnace slag. Mater. Construcc. 46 [241], 23–37.

58. Wang, S.D.; Scrivener, K.L. (1995) Hydration Products of Alkali Activated Slag Cement. Cem. Concr. Res. 25 [3], 561–571. http://dx.doi.org/10.1016/0008-8846(95)00045-E

59. Puertas, F.; Fernández-Jiménez, A.; Blanco-Varela, M.T. (2004) Pore solution in alkali activated slag cement pastes. Relation to the composition and structure of calcium silicate hydrate. Cem. Concr. Res. 34, 195–206. http://dx.doi.org/10.1016/S0008-8846(03)00254-0

60. Wang, S.D. (1995) Alkaline activation of slag. PhD Thesis, Imperial College, University of London.

61. Mozgawa, W.; Deja, J. (2009) Spectroscopic studies of alkaline activated slag geopolymers. J. Mol. Struct. 924–926, 434–441. http://dx.doi.org/10.1016/j.molstruc.2008.12.026

62. Ben Haha, M.; Lothenbach, B.; Le Saout, G.; Winnefeld, F. (2011) Influence of slag chemistry on the hydration of alkali.activated blast furnace slag-part I. Effect of MgO. Cem. Concr. Res. 42, 74–83. http://dx.doi.org/10.1016/j.cemconres.2011.08.005

63. Ben Haha, M.; Lothenbach, B.; Le Saout, G.; Winnefeld, F. (2011) Influence of slag chemistry on the hydration of alkali activated blast furnace slag-part II. Effect of Al2O3. Cem. Concr. Res. 42, 74–83. http://dx.doi.org/10.1016/j.cemconres.2011.08.005. http://dx.doi.org/10.1016/j.cemconres.2011.08.005

64. Cong, X.D.; Kirkpatrick, R.J. (1996) 29Si NMR study of the structure of the calcium silicate hydrate. Adv. Cem. Bas. Mat. 3, 144–156. http://dx.doi.org/10.1016/S1065-7355(96)90046-2

65. Richardson, I.; Groves, G.W. (1997) The structure of the calcium silicate hydrate phases present in hardened pastes of white Portland cement /blast-furnace slag blends. J. Mater. Sci. 32, 4793–4802. http://dx.doi.org/10.1023/A:1018639232570

66. Schilling, P.J.; Butler, L.G.; Roy, A.; Eaton, H.C. (1994) 29Si and 27Al MAS-NMR of NaOH activated blast furnace slag. J. Am. Ceram. Soc. 77 [9], 2363–2368. http://dx.doi.org/10.1111/j.1151-2916.1994.tb04606.x

67. Richardson, I.; Groves, G.W. (1997) The structure of the calcium silicate hydrate phases present in hardened pastes of white Portland cement /blast-furnace slag blends. J. Mater. Sci. 32, 4793–4802. http://dx.doi.org/10.1023/A:1018639232570

68. Richardson, I. G.; Brough, A. R.; Groves, G. W.; Dobson, C. M. (1994) The Characterisation of Hardened Alkali-Activated Blast-Furnace Slag Pastes and the Nature of the Calcium Silicate Hydrate (C-S-H). Cem. Concr. Res. 5 [5], 813–829. http://dx.doi.org/10.1016/0008-8846(94)90002-7

69. Puertas, F.; Palacios, M.; Manzano, H.; Dolado, J.S.; Rico, A.; Rodríguez, J. (2011) A model for the C-A-S-H gel formed in alkali-activated slag cements. Journal of European Ceramic Soc. 31 [12], 2043–2056. http://dx.doi.org/10.1016/j.jeurceramsoc.2011.04.036

70. Myers, R.J.; Bernal, S.A.; San Nicolas, R.; Provis, J.L. (2013) Generalized Structural Description of Calcium−Sodium Aluminosilicate Hydrate Gels: The Cross-Linked Substituted Tobermorite Model. Langmuir 2013. 29, 5294–5306. http://dx.doi.org/10.1021/la4000473 PMid:23534827

71. Hannus, I.; Kiricsi, I.; Lentz, P.; Nagy, J.B (1999) Characterization of alkali ions in the Y-type zeolites by multi MAS NMR studies. Colloids and Surfaces A. 158, 29–34. http://dx.doi.org/10.1016/S0927-7757(99)00127-2

72. Barbosa, V.F.F.; Mackenzie, K.J.D.; Thaumaturgo, C. (2000) Synthesis and characterization of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers. Inter. J. Inorganic Mat. 2, 209–317. http://dx.doi.org/10.1016/S1466-6049(00)00041-6

73. Bernal, S. A.; Provis, J. L.; Walkley, B.; San Nicolas, R.; Gehman, J. D.; Brice, D. G.; Kilcullen, A. R; Duxson, P.; van Deventer, J. S.J. (2013) Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation. Cem. Concr. Res. 53, 127–144. http://dx.doi.org/10.1016/j.cemconres.2013.06.007

74. Caldaron, A.A.; Burg, R.G. (1994) High-reactivity metakaolin: a new generation mineral. Concr. Int. 11, 37–40.

75. Pera, J. (2001) Metakaolin and calcined clays. Cem. Concr. Compos. 23 [6], iii. http://dx.doi.org/10.1016/S0958-9465(00)00098-6

76. Ambroise, J.; Murat, M.; Pera, J. (1985) Hydration reaction and hardening of calcined clays and related minerals: V. Extension of the research and general conclusions. Cem. Concr. Res. 15, 261–268. http://dx.doi.org/10.1016/0008-8846(85)90037-7

77. Granizo, M. L.; Blanco, M.T. (1998) Alkaline activation of metakaolin - An isothermal conduction calorimetry styudy. J. of thermal analysis. 52, 957–965. http://dx.doi.org/10.1023/A:1010176321136

78. Granizo, M.L.; Alonso, S.; Blanco Varela, M.T.; Palomo, A. (2002) Alkaline activation of metakaolin: Effect of calcium hydroxide in the products of reaction. J. Am. Ceram. Soc. 85, 225–231. http://dx.doi.org/10.1111/j.1151-2916.2002.tb00070.x

79. Granizo, M. L.; Blanco, M.T.; and Martinez Ramirez, S. (2007) Alkaline activation of metakaolins: Parameters affecting mechanical, structural and microestructural properties. J. Material Science. 42, 2934–2943. http://dx.doi.org/10.1007/s10853-006-0565-y

80. Férnandez-Jiménez, A.; Palomo, A. (2003) Characterization of fly ashes. Potencial reactivity as alkaline cements. FUEL. 82 [18], 2259–2265. http://dx.doi.org/10.1016/S0016-2361(03)00194-7

81. Fernández-Jiménez, A.; Palomo, A.; Sobrados, I.; and Sanz, J. (2006) The role played by the reactive alumina content in the alkaline activation of fly ashes. Microporous and Mesoporous materials. 91, 111–119. http://dx.doi.org/10.1016/j.micromeso.2005.11.015

82. Fernández-Jiménez, A.; Palomo, A.; and Alonso, M.M. (2005) Alkali activation of fly ashes: mechanisms of reaction. Congress of Non-Traditional Cement and Concrete II, Ed. V. Bilek and Z. Kersner. University of technology. 1–12 (Brno, Czech Republic) ISBN: 80-214-2853-8.

83. Weng, L.; Sagoe-Crenstil, K. (2007) Dissolution processes, hydrolysis and condensation reaction during geopolymer synthesis: Part I - Low Si/Al ratio systems. J. Material Science. 42, 2997–3006. http://dx.doi.org/10.1007/s10853-006-0820-2

84. Palomo, A.; Fernández-Jimenez, A.; Kovalchuck, G. (2005), Some key factors affecting the alkali activation of fly ash. 2nd International Symposium of Non- Traditional Cement and Concrete (Brno, Czech Republic).

85. Bakharev, T. (2005) Geopolymeric materials prepared using Class F fly ash and elevated temperature curing. Cem. Concr. Res. 35, 1224–1232. http://dx.doi.org/10.1016/j.cemconres.2004.06.031

86. Criado, M.; Palomo, A.; Fernández -Jimenez, A. (2005) Alkali activation of fly ashes. Part I. Effect of curing conditions on the carbonation of reaction products. FUEL. 84, 2048–2054. http://dx.doi.org/10.1016/j.fuel.2005.03.030

87. Criado, M.; Fernández-Jimenez, A.; Palomo, A.; Sobrados, I.; Sanz, J. (2007) Effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Part II: 29Si MAS NMR Survey. Microporous and Mesop. Mat. 109, 525–534. http://dx.doi.org/10.1016/j.micromeso.2007.05.062

88. Duxson, P.; Provis, J.; Lukey, G.C.; Mallicoat, S.; Kriven, S.W.; van Deventer, J.S.J. (2005) Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids and Surface A - Physicochemical and Engineering Aspects. 269, 47–58. http://dx.doi.org/10.1016/j.colsurfa.2005.06.060

89. Kriven, W.M.; Bell, J.L; Gordon, M. (2003) Microstruture and microchemistry of fully-reacted geopolymers and geopolymeric matrix composites. Ceramic Transactions. 153, 227–250.

90. Schmücker, M.; MacKenzie, K.J.D. (2005) Microstructure of sodium polysiale soloxo geopolymer. Ceramic International. 31, 433–437. http://dx.doi.org/10.1016/j.ceramint.2004.06.006

91. Fernández-Jimenez, A.; Palomo, A.; Criado, M. (2005) Microstructure development of alkali-activated fly ash cement: a descriptive model. Cem. Concr. Res. 35 [6], 1204–1209. http://dx.doi.org/10.1016/j.cemconres.2004.08.021

92. Davidovits, J. (1988) Geopolymer properties and chemistry. 1st European Conference on Soft Mineralurgy, Geopolymer 88. 25–48 (Compiegne, France).

93. Duxson, P. (2006) PhD Thesis. Department of Chemical and Biomolecular engineering, University of Melbourne, Australia.

94. Fernández-Jiménez, A.; Palomo, A. (2005) Composition and microstructure of alkali activated fly ash binder. Effect of activator. Cem. Concr. Res. 35 [10], 1985–1992. http://dx.doi.org/10.1016/j.cemconres.2005.03.003

95. Duxson, P.; Lukey, G.C.; Separovic, F.; van Deventer, J.S.J. (2005) Effect of alkali cations on aluminium incorporation in geopolymeric gels. Ind. Eng. Chem. Res. 44, 832–839. http://dx.doi.org/10.1021/ie0494216

96. Criado, M. (2007) Nuevos materiales cementantes basados en la activación alcalina de cenizas volantes. Caracterización de geles en función del contenido de sílice soluble adicionado. PhD Tesis, Universidad Autónoma de Madrid, Spain.

97. Garcia-Lodeiro, I.; Fernández-Jiménez, A.; Palomo, A.; and Macphee, D. E. (2010) Effect of Calcium Additions on N–A–S–H cementitious Gels. J. Am. Ceram. Soc. 93 [7], 1934–1940.

98. Garcia-Lodeiro, I.; Fernández-Jimenez, A.; Palomo, A. (2013) Alkali-Activated based concrete. In: Eco-Efficient Concrete. Ed. by Pacheco Torgal, S. Jalali, L. Labrincha, and V. M. John, Woddhead Publishing Limited, Cambridge, UK.

99. Garcia-Lodeiro, I.; Maltseva, O.; Palomo, A.; and Fernández-Jimenez, A. (2012) Hybrid alkaline cements: Part I. Fundamentals. Romanian Journal of Materials. 42 [4], 330–335.

100. Palomo, A.; Maltseva, O.; Garcia-Lodeiro I.; Fernández-Jimenez, A. (2013) Hybrid alkaline cements: Part II. Clinker Factor. Romanian Journal of Materials. 43 [1], 74–79.

101. Fernández-Jimenez, A.; Flores, E.; Maltseva, O.; Garcia-Lodeiro, I.; Palomo, A. (2013) Hybrid alkaline cements: Part III. Durability and Industrial Applications. Romanian Journal of Materials. 43 [2], 68–73.

102. García-Lodeiro, I.; Macphee, D.E.; Palomo, A.; and Fernández-Jiménez, A. (2009) Effect of alkalis on fresh C-S-H gels. FTIR analysis. Cem. Concr. Res. 39, 147–153. http://dx.doi.org/10.1016/j.cemconres.2009.01.003

103. García-Lodeiro, I.; Fernández-Jimenez, A.; Palomo, A.; and Macphee, D.E. (2010) Effect on fresh C-S-H gels of the simultaneous addition of alkali and aluminium. Cem. Concr. Res. 40, 27–32. http://dx.doi.org/10.1016/j.cemconres.2009.08.004

104. Garcia-Lodeiro, I.; Palomo, A.; Fernández-Jiménez, A.; and Macphee, D.E. (2011) Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O-CaO-Al2O3-SiO2-H2O. Cem. Concr. Res. 41, 923–931. http://dx.doi.org/10.1016/j.cemconres.2011.05.006. http://dx.doi.org/10.1016/j.cemconres.2011.05.006

105. Krivenko, P.V. (1997) Alkaline cements: terminology, classification, aspects of durability. Proceed 10th Congress on the Chemistry of Cements. 4 iv 046 (Sweden).

106. Krivenko, P.V.; Pushkaryeva, E.K. (1993) Durability of slag alkaline cement concretes. Budivelnyk Publish. 224. Kiev, Ukraine.

107. Van Jaarveld, J.G.S.; van Deventer, J.S.J.; Lukey, G.C. (2002) The effect of composition and temperature on the properties of fly ash and Kaolinite – based geopolymers. Chem. Eng. J. 89, 63–73. http://dx.doi.org/10.1016/S1385-8947(02)00025-6

108. Glukhovsky, V. D.; Krivenko, P.V.; et al. (1988) Manufacture of concretes and structures from slag alkaline binders. Budivelnyk Publish. Kiev, Ukraine.

109. Efremov, A.N.; Krivenko, P.V. (2008) Fire-resistant concretes from alkaline cements with the increased thermo-mechanical properties. DonNASA Publish. Makeevka, Ukraine.

110. Brodko, O.A. (1999) Experience of explotation of the alkaline ements Concrete. Ed. Krivenko P. Proceedings of the Second International Conference on Alkaline Cements and Concrete. 657–684 (Kiev, Ukraine).

111. Davidovits, J.; and Sawyer, J.L. (1985) Early high-strength mineral polymer. In: U.S. Patent 4, 509, 985, Office, U.S.P., (ed.), Pyrament Inc., USA.

112. Malone, P.G.; Randall, C.J.; and Kirkpatrick, T. (1985) Potential applications of alkali-activated aluminosilicate binders in military operations. Geotechnical Laboratory, Department of the Army, GL-85–15.

113. Krivenko, P.V. (2002) Alkaline cements: From research to application. In: Lukey, G.C., (ed.) Geopolymers 2002. Turn Potential into Profit., Melbourne, Australia. CD-ROM Proceedings. Siloxo Pty. Ltd. PMid:12077454

114. Palomo, A.; Fernández-Jiménez, A.; López-Hombrados, C.; and Lleyda, J.L. (2007) Railway sleepers made of alkali activated fly ash concrete. Rev. Ing. Constr. 22 [2], 75–80. http://dx.doi.org/10.4067/S0718-50732007000200001

115. Xu, H.; Provis, J.L.; van Deventer, J.S.J.; and Krivenko, P.V. (2008) Characterization of aged slag concretes. ACI Mater. J. 105 [2], 131–139.

116. Zeobond (www.zeobond.com) E-Crete Enginnering summary (2008).

117. The Ministry for Construction of Enterprises of Heavy Industry of the USSR: Industry Standard "Slag alkaline binders. Technical Specifications", (OST 67–11–84) (1984) Moscow.

118. The State Committee of Belarus Republic of the USSR for Construction (Gosstroy BelSSR): Technical Specifications "A slag alkaline cement from cupola/iron granulated slag" (TU 7 BelSSR 5–90) (1990) Minsk.

119. The State Committee of Ukrainian Republic of the USSR for Urban Planning and Architecture: A slag alkaline binder. Technical Specifications (DSTU BV 2.7–24–95 supersedes RST UkrSSR 5024–89) (1995) Kiev.

120. DSTU B.V. 2.7–181 (2009), Alkaline cements specifications. National Standard of Ukraine. Kiev.

121. ASTM International: Standard Performance Specification for Hydraulic Cement (ASTM C1157/C1157M) (2010) West Conshohocken.




Copyright (c) 2014 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es