Materiales de Construcción, Vol 65, No 318 (2015)

Influence of supplementary cementitious materials on water transport kinetics and mechanical properties of hydrated lime and cement mortars

C. Ince
Yeditepe University, Turkey

S. Derogar
Yeditepe University, Turkey

T. M. Michelitsch
Université Pierre et Marie Curie, France


The purpose of this paper is an investigation of the possible role of supplementary cementitious materials (SCMs) on water transport kinetics and mechanical properties of hydrated lime (CL90) and Portland cement (PC) mortars. The properties of hydrated lime are significantly different from those of cement and therefore modifying fresh and hardened properties of these mortars are vital for mortar/substrate optimisation in masonry construction. The parameters investigated in this paper often are the main barriers to the use of hydrated lime in construction practice. The results show that transfer sorptivity and time to dewater freshly-mixed hydrated lime mortars can be modified when binder is partially replaced with SCMs. Compressive strength of CL90 mortars is increased systematically with the increased replacement levels of SCMs and the results are supported with the microstructural images. The ability to modify the water transport kinetics and mechanical properties allows compatibility between the mortar and the substrate unit in masonry construction.


Mortar; Lime; Transport properties; Scanning electron microscopy (SEM)

Full Text:



1. Carter, M.A.; Green, K.M.; Wilson, M.A.; Hoff, W.D. (2003) Measurement of the water retentivity of cement mortars. Adv. Cem. Res. 15 [4], 155–159.

2. Ince, C.; Carter, M.A.; Wilson, M.A.; El-Turki, A.; Ball, R.J.; Allen, G.C.; Collier, N.C. (2010) Analysis of the abstraction of water from freshly mixed jointing mortars in masonry construction. Mater. Struct. 43 [7], 985–992.

3. El-Turki, A.; Ball, R.J.; Carter, M.A.; Wilson, M.A.; Ince, C.; Allen, G.C. (2010) Effect of dewatering on the strength of lime and cement mortars. J. Amer. Ceram. Soc. 93 [7], 2074–2081.

4. Ince, C.; Carter, M.A.; Wilson, M.A. (2013) The water retaining characteristics of lime mortars. Mater. Struct. Published Online 30 November 2013.

5. Andrejkovicˇováa, S.; Velosab, A.L.; Ferrazb, E.; Rochaa, F. (2014) Influence of clay minerals addition on mechanical properties of air lime–metakaolin mortars. Constr. Build. Mater. 65, 132–139.

6. Gameiro, A.; Santos Silva, A.; Faria, P.; Grilo, J.; Branco, T.; Veiga, R.; Velosa, A. (2014) Physical and chemical assessment of lime-metakaolin mortars: Influence of binder: aggregate ratio. Cem. Concr. Compos. 45, 264–271.

7. Nežerka, V.; Slížková, Z.; Tesárek, P.; Plachy´, T.; Frankeová, D.; Petránˇová, V. (2014) Comprehensive study on mechanical properties of lime-based pastes with additions of metakaolin and brick dust. Cem. Concr. Res. 64, 17–29.

8. Mertens, G.; Snellings, R.; Van Balen, K.; Bicer-Simsir, B.; Verlooy, P.; Elsen, J. (2009) Pozzolanic reactions of common natural zeolites with lime and parameters affecting their reactivity. Cem. Concr. Res. 39 [3], 233–240.

9. Matias, G.; Faria, P.; Torres, I. (2014) Lime mortars with ceramic wastes: characterization of components and their influence on the mechanical behaviour. Constr. Build. Mater. 73, 523–534.

10. Bulut U. (2010) Use of Perlite as a Pozzolanic Addition in Lime Mortars. Gazi Uni. J. Sci. 23 [3], 305–313.

11. Ozturk, Y. (2011) The use of supplementary cementing materials in the manipulation of mix water transport in mortar-masonry systems. MPhil Thesis, The University of Manchester, UK.

12. Collier, N.C.; Wilson, M.A.; Carter, M.A.; Hoff, W.D.; Hall, C.; Ball, R.J.; El-Turki, A.; Allen, G.C. (2007) Theoretical development and validation of a sharp front model of the dewatering of a slurry by an absorbent substrate. J. Phys. D 40 [13], 4049–4054.

13. Hall, C.; Hoff, W.D. (2002) Water transport in brick, stone and concrete. Taylor and Francis, London, UK.

14. BSI (2010) EN 459-1:2010. Building Lime. Definitions, specifications and conformity criteria. BSI, London, UK.

15. BSI (2005) EN 450-1:2005 Fly ash for concrete. Definition, specifications and conformity criteria. BSI, London, UK.

16. BSI (2006) EN 15167-1:2006 Ground granulated blast furnace slag for use in concrete, mortar and grout. Definitions, specifications and conformity criteria. BSI, London, UK.

17. BSI (2009) EN 13263-1:2009 Silica fume for concrete. Definitions, requirements and conformity criteria. BSI, London, UK.

18. BSI (2002) EN 13139:2002 Aggregates for mortar. BSI, London, UK.

19. Ince, C.; Carter, M.A.; Wilson, M.A.; Collier, N.C.; El-Turki, A.; Ball, R.J.; Allen, G.C. (2011) Factors Affecting the Water Retaining Characteristics of Lime and Cement Mortars in the Freshly-Mixed State. Mater. Struct. 44 [2], 509–516.

20. BSI (1999) EN 1015-3:1999. 'Methods of test for mortar for masonry. Determination of consistence of fresh mortar (by flow table)'. BSI, London, UK.

21. BSI (2005) EN 196-3:2005+A1:2008. 'Methods of testing cement. Determination of setting times and soundness'. BSI, London, UK.

22. Domone, P.; Illston, J. (2010) Construction materials: their nature and behaviour, 4th edn. Taylor & Francis, London, UK.

23. Richardson, D.N. (2006) Organizational Results Research Report - Strength and Durability of a 70% Ground Granulated Blast Furnace Slag Concrete Mix. Missouri Transportation Institute and Missouri Department of Transportation, USA.

Copyright (c) 2015 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support