Materiales de Construcción, Vol 66, No 322 (2016)

The effect of the addition of ground olive stones on the physical and mechanical properties of clay bricks


https://doi.org/10.3989/mc.2016.00815

S. Arezki
Laboratoire de Génie de Construction et d’Architecture, Faculté de Technologie, Université de Bejaia, Algeria

N. Chelouah
Laboratoire de Génie de Construction et d’Architecture, Faculté de Technologie, Université de Bejaia, Algeria

A. Tahakourt
Laboratoire de Génie de Construction et d’Architecture, Faculté de Technologie, Université de Bejaia, Algeria

Abstract


This study deals with the effect of ground olive stones (GOS) on the performance of fired clay bricks. Seven different clay-GOS mixes with 0, 1, 2, 3, 4, 5 and 10 wt % of GOS respectively were used for making fired brick samples. All samples were fired at 900 °C. The technological properties of the resultant material were then determined, including shrinkage, apparent density, pore size distribution, thermal conductivity, water absorption, and compressive and flexural strength. The addition of GOS to the mixture reduced the compressive strength of fired clay bricks. All clay brick pieces exhibited low firing shrinkage. It was apparent that as the percentage of GOS increased in the body, there was a noticeable increase in porosity. The water absorption coefficient decreased with increasing additions. The results indicated that thermal conductivity decreases with decrease in density and increase in porosity in fired clay bricks.

Keywords


Brick; Organic material; Temperature; Compressive strength; Thermal Analysis

Full Text:


HTML PDF XML

References


1. Raut, S.P.; Ralegaonkar, R.V; Mandavgane, S.A. (2011) Development of sustainable construction material using industrial and agricultural solid waste: A review of wastecreate bricks. Construct. Build. Mat. 25 [10], 4037–4042. http://dx.doi.org/10.1016/j.conbuildmat.2011.04.038

2. Demir, I.; Baspinar, M.S.; Orhan, M. (2005) Utilization of kraft pulp production residues in clay brick production. Build. Envir. 40 [11], 1533–1537. http://dx.doi.org/10.1016/j.buildenv.2004.11.021

3. Russ, W.; Mortel, H.; Pittroff, R.M. (2005) Application of spent grains to increase porosity in bricks. Construct. Build. Mat. 19 [2], 117–126. http://dx.doi.org/10.1016/j.conbuildmat.2004.05.014

4. Raut, S.P.; Ralegaonkar, R.V.; Mandavgane, S.A. (2013) Utilization of recycle paper mill residue and rice husk ash in production of light weight bricks. Archives of civil and mechanical engineering 13 [2], 269–275. http://dx.doi.org/10.1016/j.acme.2012.12.006

5. Vichaphund, S.; Intiya, W.; Kongkaew, A.; Loykulnant, S.; Thavorniti, P. (2012) Utilization of sludge waste from natural rubber manufacturing process as a raw material for clayceramic production. Envir. Tech. 33 [22], 2507–2510. http://dx.doi.org/10.1080/09593330.2012.668941 PMid:23437647 6. Turgut, P.; Yesilata, B. (2008) Physico-mechanical and thermal performances of newly developed rubber-added bricks. Energy and Buildings 40, 679–688. http://dx.doi.org/10.1016/j.enbuild.2007.05.002

7. Basegio, T.; Berutti, F.; Bernades, A.; Bergmann, C.P. (2002) Environmental and technical aspects of the utilization of tannery sludge as a raw material for clay products. J. Eur. Cer. Soc. 22, 2251–2259. http://dx.doi.org/10.1016/S0955-2219(02)00024-9

8. Sutcu, M.; Akkurt, S. (2009) The use of recycled paper processing residues in making porous brick with reduced thermal conductivity. Ceram. Int. 35, 2625–2631. http://dx.doi.org/10.1016/j.ceramint.2009.02.027

9. Demir, I. (2006) An investigation on the production of construction brick with processed waste tea. Build. Envir. 41 [9], 1274–1278. http://dx.doi.org/10.1016/j.buildenv.2005.05.004

10. Demir, I. (2008) Effect of organic residues addition on the technological properties of clay bricks. Waste Manag. 28 [3], 622–627. http://dx.doi.org/10.1016/j.wasman.2007.03.019 PMid:17512183

11. Barbieri, L.; Andreola, F.; Lancellotti, I,; Taurino. R. (2013) Management of agricultural biomass wastes. Preliminary study on characterization and valorisation in clay matrix bricks. Waste. Manag. 33 [11], 2307–2315. http://dx.doi.org/10.1016/j.wasman.2013.03.014 PMid:23602302

12. Abdul Kadir, A,; Abbas Mohajerani, A. (2011) Bricks: An excellent building material for recycling wastes - a review. Proceedings of the IASTED International Conference July 4–6, 2011 Calgary, AB, Canada. Environmental Management and Engineering (EME 2011).

13. Martinez -Cartas, M.L.; Eliche-Quesada, D.; Cruz-Pérez, N. Corpas-Iglesias, F.A. (2012) Utilization of bagasse from the beer industry in clay brick production for building. Mater. Construcc. 62 [306], 199–212.

14. Viruthagiri, G.; Sathiya, P.S.; Shanmugam, N. (2014) Reuse of Sugarcane Bagasse Ash (SCBA) for Clay Brick Production. Indian Journal of applied Research 4, 1–5. http://dx.doi.org/10.15373/2249555X/August2014/188

15. Cultrone, G.; Sebastián E. (2009) Fly ash addition in clayey materials to improve the quality of solid bricks. Construct. Build. Mat. 23 [11], 78–84. http://dx.doi.org/10.1016/j.conbuildmat.2008.07.001

16. El-Mahllawy, M.S. (2008) Characteristics of acid resisting bricks made from quarry residues and waste steel slag. Construct. Build. Mat. 22, 1887–1896. http://dx.doi.org/10.1016/j.conbuildmat.2007.04.007

17. Xavier, G.C.; Saboya, F.; Maia, P.C.; Alexandre, J. (2012) Durability of fired clay bricks containing granite powder. Mater. Construcc 62 [306], 213–229. http://dx.doi.org/10.3989/mc.2012.60710

18. Barreca, F.; Fichera, C.R. (2013) Use of olive stone as an additive in cement lime mortar to improve thermal insulation. Energy and Buildings 62, 507–513. http://dx.doi.org/10.1016/j.enbuild.2013.03.040

19. La Rubia-García, M.D.; Yebra-Rodríguez, A.; Eliche-Quesada, D.; Corpas-Iglesias, F.A.; López-Galindo, A. (2012) Assessment of olive mill solid residue (pomace) as an additive in lightweightbrick production. Construct. Build. Mat. 36, 495–500. http://dx.doi.org/10.1016/j.conbuildmat.2012.06.009

20. De la Casa J.A.; Romero, I.; Jiménez, J.; Castro, E. (2012) Fired clay masonry units production incorporating two-phase olive mill waste (alperujo). Ceram. Int. 38 [6], 5027–5037. http://dx.doi.org/10.1016/j.ceramint.2012.03.003

21. Mekki, H.; Anderson, M.; Benzina, M.; Ammar, E. (2008) Valorization of olive mill waste water by its incorporation in building bricks. J. Hazard. Mat. 158, 308–315. http://dx.doi.org/10.1016/j.jhazmat.2008.01.104 PMid:18342437

22. Mekki, H.; Anderson, M.; Amar, E.; Skyrratt, G.; Benzina, M. (2006) Olive oil mill waste water as a replacement for fresh water in the manufacture of fired clay bricks. Journal of Chemical Technology & Biotechnology 08 [81], 1419–1425. http://dx.doi.org/10.1002/jctb.1579

23. Eliche-Quesada, D.; Iglesia-Godino, F.J.; Pérez-Villarejo, L.; Corpas-Iglesias, F.A. (2014) Replacement of the mainly fresh water by wastewater olive oil extraction in the extrusion of ceramics bricks, Construct. Build. Mat. 10 [68], 659–666. http://dx.doi.org/10.1016/j.conbuildmat.2014.07.017

24. De la Casa, J.A.; Castro, E. (2014) Recycling of washed olive pomace ash for fired clay brick manufacturing Construct. Build. Mat. 61, 320–326. http://dx.doi.org/10.1016/j.conbuildmat.2014.03.026

25. Zhang, L. (2013) Production of bricks from waste materials – A review. Construct. Build. Mat. 47, 643–655. http://dx.doi.org/10.1016/j.conbuildmat.2013.05.043

26. Neves Monteiro, S.; Fontes Vieira, C.M. (2014) On the production of fired clay bricks from waste materials: A critical update. Construct. Build. Mat. 68, 599–610. http://dx.doi.org/10.1016/j.conbuildmat.2014.07.006

27. Santos, S.F.; Tonoli, G.H.D.; Mejia, J.E.B.; Fiorelli, J.; Savastano Jr, H. (2015) Non-conventional cement-based composites reinforced with vegetable fibers: A review of strategies to improve durability. Mater. Construcc. 65 [317].

28. NA 1957. Algerian Norms (1995) Firing Clay bricks - Determination of water absorption coefficient.

29. NF P 94-051. French Norms (1994) Determination of the Atterberg limits. Liquid limit-plastic limit.

30. Weng, C.H.; Lin, D.F.; Chiang, P.C. (2003) Utilization of Sludge as Brick Materials. Advances in Environmental Research. 7, 679–685. http://dx.doi.org/10.1016/S1093-0191(02)00037-0

31. Citroni. J.; Rodriguez. M.; Carrasco, M.; Avenda-o. M.; Sota. JD.; Franzoy. MI.; Baldó. E. (2006) Desarrollo de ladrillo cerámico alivianado a partir de la utilización de residuos. Recicladode residuos de construccion y demolicion (RCD) y de residuos de procesos (RP), PROCQMA-Universidad Technológica National, 11 y 12 de Abril, San Rafael, Mendoza, Argentina.

32. NA 5023. Algerian Norms (1995) Firing Clay bricks-Determination of compressive strength of bricks.

33. Eliche-Quesada, D.; Martínez-García, C.; Martínez-Cartas, M.L.; Cotes-Palomino, M.T.; Perez-Villarejo, L.; Cruz-Perez, N.; Corpas-Iglesias, F.A. (2011) The use of different forms of waste in the manufacture of ceramic bricks. Applied. Clay. Science. 52, 270–276. http://dx.doi.org/10.1016/j.clay.2011.03.003

34. Karaman, S.; Ersahin, S.; Gunal, H. (2006) Firing temperature and firing time influence on mechanical and physical properties of clay bricks. J. Scientific and Industrial Research. 65, 153–159.




Copyright (c) 2016 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es