Materiales de Construcción, Vol 68, No 329 (2018)

Porous alkali activated materials with slow alkali release dynamic. Role of composition


https://doi.org/10.3989/mc.2018.14016

G. Bumanis
Institute of Materials and Structures, Riga Technical University, Latvia
orcid http://orcid.org/0000-0002-6617-0120

D. Bajare
Institute of Materials and Structures, Riga Technical University, Latvia
orcid http://orcid.org/0000-0002-3250-5594

Abstract


Alkali activated materials (AAM) based on calcined metakaolin or illite clay together with waste by-products, such as waste glass or aluminium scrap recycling waste, were tested as value-added materials for pH stabilization in biogas technology where decrease of pH should be avoided. Porous materials with ability to slowly leach alkalis in the water media thus providing continuous control of the pH level were obtained. XRD, FTIR, SEM and titration methods were used to characterize AAM and their leaching properties. It is clear that composition of the material has an important effect on the diffusion of alkali from structure. Namely, higher Si/Al and Na/Al molar ratios may increase pore solution transfer to the leachate. The leaching rate of alkalis from the structure of AAM is high for the first few days, decreasing over time. It was possible to calculate the buffer capacity from the mixture design of AAM.

Keywords


Alkali-activated cement; Waste treatment; Diffusion; Microstructure, pH

Full Text:


HTML PDF XML

References


Montalvo, S.; Guerrero, L.; Borja, R. (2012) Application of natural zeolites in anaerobic digestion processes: A review. Appl Clay Sci. 58:125-133. https://doi.org/10.1016/j.clay.2012.01.013

Lloyd. R.R.; Provis, J.L.; Van Deventer J.S.J. (2010) Pore solution composition and alkali diffusion in inorganic polymer cement. Cem Concr Res. 40(9):1386-1392. https://doi.org/10.1016/j.cemconres.2010.04.008

Aly, Z.; Vance E.R.; Perera D.S. (2008) Aqueous leachability of metakaolin-based geopolymers with molar ratios of Si/Al=1.5 4. J Nucl Mater. 378(2):172-179. https://doi.org/10.1016/j.jnucmat.2008.06.015

Xie, T.; Ozbakkaloglu, T. (2015) Behavior of low-calcium fly and bottom ash-based geopolymer concrete cured at ambient temperature. Ceram Int. 41(4):5945-5958. https://doi.org/10.1016/j.ceramint.2015.01.031

Duxson, P.; Lukey G.C.; Separovic, F.; Van Deventer, J.S.J. (2005) Effect of alkali cations on aluminum incorporation in geopolymeric gels. Ind Eng Chem Res. 44(4):832-839. https://doi.org/10.1021/ie0494216

Hong, S.Y.; Glasser, F.P. (2002) Alkali sorption by C-S-H and C-A-S-H gels: Part II. Role of alumina. Cem Concr Res. 32(7):1101-1111. https://doi.org/10.1016/S0008-8846(02)00753-6

Yan, B.; Duan, P.; Ren, D. (2017) Mechanical strength, surface abrasion resistance and microstructure of fly ash-metakaolin-sepiolite geopolymer composites. Ceram Int. 43(1):1052-1060. https://doi.org/10.1016/j.ceramint.2016.10.039

Lloyd, R.R.; Provis, J.L.; Van Deventer, J.S.J. (2009) Microscopy and microanalysis of inorganic polymer cements. 1: Remnant fly ash particles. J Mater Sci. 44(2):608-619. https://doi.org/10.1007/s10853-008-3077-0

Hlavvacek, P.; Smilauer, V.; Skvara, F.; Kopecky, L.; Sulc, R. (2015) Inorganic foams made from alkali-activated fly ash: Mechanical, chemical and physical properties. J Eur Ceram Soc. 35(2):703-709. https://doi.org/10.1016/j.jeurceramsoc.2014.08.024

Komnitsas, K.; Zaharaki, D.; Bartzas, G. (2013) Effect of sulphate and nitrate anions on heavy metal immobilisation in ferronickel slag geopolymers. Appl Clay Sci. 73:103-109. https://doi.org/10.1016/j.clay.2012.09.018

Zheng, L.; Wang, C.; Wang, W.; Shi, Y.; Gao, X. (2011) Immobilization of MSWI fly ash through geopolymerization: effects of water-wash. Waste Manag. 31(2):311-317. https://doi.org/10.1016/j.wasman.2010.05.015 PMid:20609574

Tsakiridis, P.E. (2012) Aluminium salt slag characterization and utilization - A review. J Hazard Mater. 217-218:1-10. https://doi.org/10.1016/j.jhazmat.2012.03.052 PMid:22480708

Bai, C.; Franchin, G.; Elsayed, H.; Conte, A.; Colombo, P. (2016) High strength metakaolin-based geopolymer foams with variable macroporous structure. J Eur Ceram Soc. 36(16):4243-4249. https://doi.org/10.1016/j.jeurceramsoc.2016.06.045

Ilic, B.; Mitrovic, A.; Milicic, L. (2010) Thermal treatment of kaolin clay to obtain metakaolin. Hem Ind. 64(4):351-356. https://doi.org/10.2298/HEMIND100322014I

Liew, Y.M.; Kamarudin, H.; Mustafa Al Bakri, A.M. (2012) Processing and characterization of calcined kaolin cement powder. Constr Build Mater. 30:794-802. https://doi.org/10.1016/j.conbuildmat.2011.12.079

Bohor, B.F. High-Temperature Phase Development in Illitic Clays. http://www.clays.org/journal/archive/volume%20 12/12-1-233.pdf. Accessed March 28, 2017

Baascarevic, Z.; Komljenovic, M.; Miladinovic, Z. (2013) Effects of the concentrated NH4NO3 solution on mechanical properties and structure of the fly ash based geopolymers. Constr Build Mater. 41(3):570-579. https://doi.org/10.1016/j.conbuildmat.2012.12.067

Bernal, S.A.; Gutierrez, R.M.M. de; Provis, J.L.; Rose, V. (2010) Effect of Silicate Modulus and Metakaolin incorporation on the carbonation of alkali silicate-activated slags. Cem Concr Res. 40(6):898-907. https://doi.org/10.1016/j.cemconres.2010.02.003

Bajare, D.; Bumanis, G.; Korjakins, A. (2014) New Porous Material Made from Industrial and Municipal Waste for Building Application. Mater Sci. 20(3):333-338.

Bajare, D.; Bumanis, G. (2014) Alkali diffusion in porous alkali activated materials. In: NTCC 2014: International Conference on Non-Traditional Cement and Concrete. 1-9.

Hajimohammadi, A.; Provis, J.L.; van Deventer, J.S.J. (2011) The effect of silica availability on the mechanism of geopolymerisation. Cem Concr Res. 41(3):210-216. https://doi.org/10.1016/j.cemconres.2011.02.001

Zhang, Z.; Wang, H.; Provis, J.L.; Bullen, F.; Reid, A.; Zhu, Y. (2012) Quantitative kinetic and structural analysis of geopolymers. Part 1. The activation of metakaolin with sodium hydroxide. Therm Acta 539:23-33. https://doi.org/10.1016/j.tca.2012.03.021

Criado, M.; Palomo, A.; Fern·ndez-JimÈnez, A. (2005) Alkali activation of fly ashes. Part 1: Effect of curing conditions on the carbonation of the reaction products. Fuel. 84(16):2048-2054. https://doi.org/10.1016/j.fuel.2005.03.030

Burciaga-DÌaz, O.; Escalante-GarcÌa, J.I. (2012) Strength and Durability in Acid Media of Alkali Silicate-Activated Metakaolin Geopolymers. Scherer G, ed. J Am Ceram Soc. 95(7):2307-2313. https://doi.org/10.1111/j.1551-2916.2012.05249.x

Bernal, S.A.; Mejía de Gutiérrez, R.; Pedraza, A.L.; Provis, J.L.; Rodriguez, E.D.; Delvasto, S. (2011) Effect of binder content on the performance of alkali-activated slag concretes. Cem Concr Res. 41(1):1-8. https://doi.org/10.1016/j.cemconres.2010.08.017




Copyright (c) 2018 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es