Materiales activados alcalinamente porosos con liberación lenta de álcalis. Efecto de la composición
DOI:
https://doi.org/10.3989/mc.2018.14016Palabras clave:
Cemento activado alcalinamente, Tratamiento de residuos, Difusión, Microestructura, pHResumen
En este estudio se han ensayado materiales activados alcalinamente (AAM) basados en metacaolín o arcilla de ilita junto con subproductos tales como residuos de vidrio o aluminio reciclado, como materiales con valor añadido para la estabilización del pH en tecnologías de biogás donde se debe evitar la disminución del pH . Se obtuvieron materiales porosos con capacidad para lixiviar lentamente los álcalis en medios acuosos, proporcionando así un control continuo del nivel de pH. Se utilizaron técnicas de DRX, FTIR, SEM y métodos de tritación para caracterizar los AAMs y sus propiedades de lixiviación. La composición del material tiene un efecto importante en la difusión del álcali de la estructura. Es decir, mayores relaciones molares de Si / Al y Na / Al pueden aumentar la transferencia de la solución del poro al lixiviado. La tasa de lixiviación de los álcalis desde la estructura de los AAMs es alta durante los primeros días, disminuyendo con el tiempo. Se ha calculado la capacidad del efecto tampón a partir del diseño de mezcla de AAM.
Descargas
Citas
Montalvo, S.; Guerrero, L.; Borja, R. (2012) Application of natural zeolites in anaerobic digestion processes: A review. Appl Clay Sci. 58:125-133. https://doi.org/10.1016/j.clay.2012.01.013
Lloyd. R.R.; Provis, J.L.; Van Deventer J.S.J. (2010) Pore solution composition and alkali diffusion in inorganic polymer cement. Cem Concr Res. 40(9):1386-1392. https://doi.org/10.1016/j.cemconres.2010.04.008
Aly, Z.; Vance E.R.; Perera D.S. (2008) Aqueous leachability of metakaolin-based geopolymers with molar ratios of Si/Al=1.5 4. J Nucl Mater. 378(2):172-179. https://doi.org/10.1016/j.jnucmat.2008.06.015
Xie, T.; Ozbakkaloglu, T. (2015) Behavior of low-calcium fly and bottom ash-based geopolymer concrete cured at ambient temperature. Ceram Int. 41(4):5945-5958. https://doi.org/10.1016/j.ceramint.2015.01.031
Duxson, P.; Lukey G.C.; Separovic, F.; Van Deventer, J.S.J. (2005) Effect of alkali cations on aluminum incorporation in geopolymeric gels. Ind Eng Chem Res. 44(4):832-839. https://doi.org/10.1021/ie0494216
Hong, S.Y.; Glasser, F.P. (2002) Alkali sorption by C-S-H and C-A-S-H gels: Part II. Role of alumina. Cem Concr Res. 32(7):1101-1111. https://doi.org/10.1016/S0008-8846(02)00753-6
Yan, B.; Duan, P.; Ren, D. (2017) Mechanical strength, surface abrasion resistance and microstructure of fly ash-metakaolin-sepiolite geopolymer composites. Ceram Int. 43(1):1052-1060. https://doi.org/10.1016/j.ceramint.2016.10.039
Lloyd, R.R.; Provis, J.L.; Van Deventer, J.S.J. (2009) Microscopy and microanalysis of inorganic polymer cements. 1: Remnant fly ash particles. J Mater Sci. 44(2):608-619. https://doi.org/10.1007/s10853-008-3077-0
Hlavvacek, P.; Smilauer, V.; Skvara, F.; Kopecky, L.; Sulc, R. (2015) Inorganic foams made from alkali-activated fly ash: Mechanical, chemical and physical properties. J Eur Ceram Soc. 35(2):703-709. https://doi.org/10.1016/j.jeurceramsoc.2014.08.024
Komnitsas, K.; Zaharaki, D.; Bartzas, G. (2013) Effect of sulphate and nitrate anions on heavy metal immobilisation in ferronickel slag geopolymers. Appl Clay Sci. 73:103-109. https://doi.org/10.1016/j.clay.2012.09.018
Zheng, L.; Wang, C.; Wang, W.; Shi, Y.; Gao, X. (2011) Immobilization of MSWI fly ash through geopolymerization: effects of water-wash. Waste Manag. 31(2):311-317. https://doi.org/10.1016/j.wasman.2010.05.015 PMid:20609574
Tsakiridis, P.E. (2012) Aluminium salt slag characterization and utilization - A review. J Hazard Mater. 217-218:1-10. https://doi.org/10.1016/j.jhazmat.2012.03.052 PMid:22480708
Bai, C.; Franchin, G.; Elsayed, H.; Conte, A.; Colombo, P. (2016) High strength metakaolin-based geopolymer foams with variable macroporous structure. J Eur Ceram Soc. 36(16):4243-4249. https://doi.org/10.1016/j.jeurceramsoc.2016.06.045
Ilic, B.; Mitrovic, A.; Milicic, L. (2010) Thermal treatment of kaolin clay to obtain metakaolin. Hem Ind. 64(4):351-356. https://doi.org/10.2298/HEMIND100322014I
Liew, Y.M.; Kamarudin, H.; Mustafa Al Bakri, A.M. (2012) Processing and characterization of calcined kaolin cement powder. Constr Build Mater. 30:794-802. https://doi.org/10.1016/j.conbuildmat.2011.12.079
Bohor, B.F. High-Temperature Phase Development in Illitic Clays. http://www.clays.org/journal/archive/volume%20 12/12-1-233.pdf. Accessed March 28, 2017
Baascarevic, Z.; Komljenovic, M.; Miladinovic, Z. (2013) Effects of the concentrated NH4NO3 solution on mechanical properties and structure of the fly ash based geopolymers. Constr Build Mater. 41(3):570-579. https://doi.org/10.1016/j.conbuildmat.2012.12.067
Bernal, S.A.; Gutierrez, R.M.M. de; Provis, J.L.; Rose, V. (2010) Effect of Silicate Modulus and Metakaolin incorporation on the carbonation of alkali silicate-activated slags. Cem Concr Res. 40(6):898-907. https://doi.org/10.1016/j.cemconres.2010.02.003
Bajare, D.; Bumanis, G.; Korjakins, A. (2014) New Porous Material Made from Industrial and Municipal Waste for Building Application. Mater Sci. 20(3):333-338.
Bajare, D.; Bumanis, G. (2014) Alkali diffusion in porous alkali activated materials. In: NTCC 2014: International Conference on Non-Traditional Cement and Concrete. 1-9.
Hajimohammadi, A.; Provis, J.L.; van Deventer, J.S.J. (2011) The effect of silica availability on the mechanism of geopolymerisation. Cem Concr Res. 41(3):210-216. https://doi.org/10.1016/j.cemconres.2011.02.001
Zhang, Z.; Wang, H.; Provis, J.L.; Bullen, F.; Reid, A.; Zhu, Y. (2012) Quantitative kinetic and structural analysis of geopolymers. Part 1. The activation of metakaolin with sodium hydroxide. Therm Acta 539:23-33. https://doi.org/10.1016/j.tca.2012.03.021
Criado, M.; Palomo, A.; Fern·ndez-JimÈnez, A. (2005) Alkali activation of fly ashes. Part 1: Effect of curing conditions on the carbonation of the reaction products. Fuel. 84(16):2048-2054. https://doi.org/10.1016/j.fuel.2005.03.030
Burciaga-DÌaz, O.; Escalante-GarcÌa, J.I. (2012) Strength and Durability in Acid Media of Alkali Silicate-Activated Metakaolin Geopolymers. Scherer G, ed. J Am Ceram Soc. 95(7):2307-2313. https://doi.org/10.1111/j.1551-2916.2012.05249.x
Bernal, S.A.; Mejía de Gutiérrez, R.; Pedraza, A.L.; Provis, J.L.; Rodriguez, E.D.; Delvasto, S. (2011) Effect of binder content on the performance of alkali-activated slag concretes. Cem Concr Res. 41(1):1-8. https://doi.org/10.1016/j.cemconres.2010.08.017
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2018 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.