Materiales de Construcción, Vol 68, No 332 (2018)

Theoretical and experimental analysis of multifunctional high performance cement mortar matrices reinforced with varying lengths of carbon fibers


https://doi.org/10.3989/mc.2018.09617

R. A. Khushnood
NUST Institute of Civil Engineering, National University of Sciences & Technology, Pakistan
orcid http://orcid.org/0000-0002-9532-4096

S. Muhammad
NUST Institute of Civil Engineering, National University of Sciences & Technology, Pakistan
orcid http://orcid.org/0000-0003-2180-1723

S. Ahmad
Department of Building and Architectural Engineering, Bahauddin Zakariya University, Pakistan
orcid http://orcid.org/0000-0002-1139-8726

J. M. Tulliani
Department of Applied Science & Technology, Politecnico di Torino, Italy
orcid http://orcid.org/0000-0003-2419-4383

M. U. Qamar
Department of Irrigation & Drainage, Faculty of Agricultural Engineering & Technology, University of Agriculture, Pakistan
orcid http://orcid.org/0000-0003-3341-2581

Q. Ullah
NUST Institute of Civil Engineering, National University of Sciences & Technology, Pakistan
orcid http://orcid.org/0000-0002-4602-5428

S. A. Khan
Abasyn University,, Pakistan
orcid http://orcid.org/0000-0003-4293-5907

A. Maqsom
Comsats Institute of Information Technology, Pakistan
orcid http://orcid.org/0000-0002-3745-516X

Abstract


An effective scheme to formulate high performance and multifunctional cement based mortar composites reinforced with varying lengths of carbon fibers has been devised. The detailed investigations pertaining to the fracture response of composites in cracks initiation and progression phases, their conducting mechanism and volumetric stability were performed with varying loads of 6mm and 12mm long carbon fibers at two different w/c ratios i.e. 0.45 and 0.50. The experiments concluded that an optimum addition of carbon fibers results in substantial improvement of fracture properties alongside significant reduction in electrical resistivity and total plastic shrinkage. The field emission scanning electron microscopy of the cryofractured specimen revealed crack arresting actions of uniformly distributed carbon fibers through successful crack bridging and branching phenomenon.

Keywords


Fiber reinforcement; Mortar; Flexural strength; Compressive strength; Microcracking

Full Text:


HTML PDF XML

References


Baeza, F.J.; Galao, O.; Zornoza, E.; Garcés, P. (2013) Effect of aspect ratio on strain sensing capacity of carbon fiber reinforced cement composites. Mater. Des. 51, 1085-94. https://doi.org/10.1016/j.matdes.2013.05.010

Kele_temur, O.; Yildiz, S.; Gökçer, B.; Arici, E. (2014) Statistical analysis for freeze-thaw resistance of cement mortars containing marble dust and glass fiber. Mater. Des. 60, 548-55.

Beigi, M.H.; Berenjian, J.; Lotfi Omran, O.; Sadeghi Nik, A.; Nikbin, I.M. (2013) An experimental survey on combined effects of fibers and nanosilica on the mechanical, rheological, and durability properties of self-compacting concrete. Mater. Des. 50, 1019-29. https://doi.org/10.1016/j.matdes.2013.03.046

Khushnood, R.A.; Ahmad, S.; Ferro, G.A.; Restuccia, L.; Tulliani, J.-M.; Jagdale, P. (2015) Modified fracture properties of cement composites with nano/micro carbonized bagasse fibers. Frat. ed Integrita Strutt. 34, 534-42.

Kordkheili, H.Y.; Hiziroglu, S.; Farsi, M. (2012) Some of the physical and mechanical properties of cement composites manufactured from carbon nanotubes and bagasse fiber. Mater. Des. 33, 395-8. https://doi.org/10.1016/j.matdes.2011.04.027

Halvaei, M.; Jamshidi, M.; Latifi, M. (2014) Application of low modulus polymeric fibers in engineered cementitious composites. J. Ind. Text. 43[4], 511-24. https://doi.org/10.1177/1528083712465881

Tiberti, G.; Minelli, F.; Plizzari, G. (2015) Cracking behavior in reinforced concrete members with steel fibers: A comprehensive experimental study. Cem. Concr. Res. 68, 24-34. https://doi.org/10.1016/j.cemconres.2014.10.011

Aslani, F.; Bastami, M. (2015) Relationship between Deflection and Crack Mouth Opening Displacement of Self-Compacting Concrete Beams with and without Fibers. Mech. Adv. Mater. Struct. 22[11], 956-67. https://doi.org/10.1080/15376494.2014.906689

Naeem, F.; Lee, H.K.; Kim, H.K.; Nam, I.W. (2017) Flexural stress and crack sensing capabilities of MWNT/ cement composites. Compos. Struct. 175, 86-100. https://doi.org/10.1016/j.compstruct.2017.04.078

Khitab, A.; Anwar, W.; Mansouri, I.; Tariq, M.K.; Mehmood, I. (2015) Future of civil engineering materials: A review from recent developments. Rev. Adv. Mater. Sci. 42[1], 20-7.

Martone, A.; Faiella, G.; Antonucci, V.; Giordano, M.; Zarrelli, M. (2011) The effect of the aspect ratio of carbón nanotubes on their effective reinforcement modulus in an epoxy matrix. Compos. Sci. Technol. 71[8], 1117-23. https://doi.org/10.1016/j.compscitech.2011.04.002

Metaxa, Z.; Konsta-Gdoutos, M.; Shah, S. (2010) Carbon Nanofiber-Reinforced Cement-Based Materials. Transp. Res. Rec. J. Transp. Res. Board. 2142[2142], 114-8. https://doi.org/10.3141/2142-17

Wen, S.; Chung, D.D.L. (2007) Partial replacement of carbon fiber by carbon black in multifunctional cement-matrix composites. Carbon N. Y. 45[3], 505-13. https://doi.org/10.1016/j.carbon.2006.10.024

Ozyurt, N.; Woo, L.Y.; Mason, T.O.; Shah, S.P.; Chung, D.D.L. (2006). Monitoring fiber dispersion in fiberreinforced cementitious materials: Comparison of AC-impedance spectroscopy and image analysis. ACI Mater. J. 103[5], 340-7.

Sun, H.; Guo, G.; Memon, S.A.; Xu, W.; Zhang, Q.; Zhu, J.-H.; et al. (2015) Recycling of carbon fibers from carbón fiber reinforced polymer using electrochemical method. Compos. Part A Appl. Sci. Manuf. 78, 10-7. https://doi.org/10.1016/j.compositesa.2015.07.015

Grunenfelder, L.K.; Suksangpanya, N.; Salinas, C.; Milliron, G.; Yaraghi, N.; Herrera, S.; et al. (2014) Bioinspired impact-resistant composites. Acta Biomater. 10[9], 3997-4008. https://doi.org/10.1016/j.actbio.2014.03.022 PMid:24681369

Shahbazpanahi, S.; Abang Ali, A.A.; Kamgar, A.; Farzadnia, N. (2015) Fracture mechanic modeling of fiber reinforced polymer shear-strengthened reinforced concrete beam. Compos. Part B Eng. 68, 113-20. https://doi.org/10.1016/j.compositesb.2014.08.041

Han, B.; Zhang, L.; Zhang, C.; Wang, Y.; Yu, X.; Ou, J. (2016) Reinforcement effect and mechanism of carbon fibers to mechanical and electrically conductive properties of cement-based materials. Constr. Build. Mater. 125, 479-89. https://doi.org/10.1016/j.conbuildmat.2016.08.063

Mechtcherine, V. (2012) Towards a durability framework for structural elements and structures made of or strengthened with high-performance fibre-reinforced composites. Constr. Build. Mater. 31, 94-104. https://doi.org/10.1016/j.conbuildmat.2011.12.072

Rangelov, M.; Nassiri, S.; Haselbach, L.; Englund, K. (2016) Using carbon fiber composites for reinforcing pervious concrete. Constr. Build. Mater. 126, 875-85. https://doi.org/10.1016/j.conbuildmat.2016.06.035

Galao, O.; Ba-ón, L.; Baeza, F.; Carmona, J.; Garcés, P.; Baeza, J.F.; et al. (2016) Highly Conductive Carbon Fiber Reinforced Concrete for Icing Prevention and Curing. Materials (Basel). 9[4], 281. https://doi.org/10.3390/ma9040281

Boris, R.; Antonovi_, V.; Kerien_, J.; Stonys, R. (2016) The effect of carbon fiber additive on early hydration of calcium aluminate cement. J. Therm. Anal. Calorim. 125[3], 1061-70. https://doi.org/10.1007/s10973-016-5312-2

Li, Z. (2017) Predicting the drying shrinkage behavior of high strength portland cement mortar under the combined influence of fine aggregate and steel micro fiber. Mater. Construcción. 67[326], 119. https://doi.org/10.3989/mc.2017.05916

Hambach, M.; Möller, H.; Neumann, T.; Volkmer, D. (2016) Portland cement paste with aligned carbon fi bers exhibiting exceptionally high flexural strength (>100 MPa). Cem. Concr. Res. 89, 80-6. https://doi.org/10.1016/j.cemconres.2016.08.011

Zhou, H.W.; Mishnaevsky, L.; Yi, H.Y.; Liu, Y.Q.; Hu, X.; Warrier, A.; et al. (2016) Carbon fiber/carbon nanotube reinforced hierarchical composites: Effect of CNT distribution on shearing strength. Compos. Part B Eng. 88, 201-11. https://doi.org/10.1016/j.compositesb.2015.10.035

Khitab, A.; Ahmad, S.; Khushnood, R.A.; Rizwan, S.A.; Ferro, G.A.; Restuccia, L.; et al. (2017) Fracture toughness and failure mechanism of high performance concrete incorporating carbon nanotubes. Frat. ed Integrita Strutt. 11[42], 238-48. https://doi.org/10.3221/IGF-ESIS.42.26

Mendes, T.M.; Hotza, D.; Repette, W.L. (2015) Nanoparticles in cement based materials: A review. Rev. Adv. Mater. Sci. 40[1], 89-96.

Ovid'ko, I.A.; Sheinerman, A.G. (2015) Toughening due to crack deflection in ceramic and metal graphene nanocomposites. Rev. Adv. Mater. Sci. 43[1-2], 52-60.

Ahmad, S.; Tulliani, J.-M.; Ferro, G.A.; Khushnood, R.A.; Restuccia, L.; Jagdale, P. (2015) Crack path and fracture surface modifications in cement composites. Frat. ed Integrita Strutt. 9[34], 524-33.

Passuello, A.; Moriconi, G.; Shah, S.P. (2009) Cracking behavior of concrete with shrinkage reducing admixtures and PVA fibers. Cem. Concr. Compos. 31[10], 699-704. https://doi.org/10.1016/j.cemconcomp.2009.08.004

Graham, R.K.; Huang, B.; Shu, X.; Burdette, E.G. (2013) Laboratory evaluation of tensile strength and energy absorbing properties of cement mortar reinforced with micro- and meso-sized carbon fibers. Constr. Build. Mater. 44, 751-6. https://doi.org/10.1016/j.conbuildmat.2013.03.071

Ferrari, V.J.; De Hanai, J.B.; De Souza, R.A. (2013) Flexural strengthening of reinforcement concrete beams using high performance fiber reinforcement cement-based composite (HPFRCC) and carbon fiber reinforced polymers (CFRP). Constr. Build. Mater. 48, 485-98. https://doi.org/10.1016/j.conbuildmat.2013.07.026

Ferrara, L.; Park, Y.D.; Shah, S.P. (2007). Toughness properties and fiber dispersion in vibrated and self-consolidating fiber reinforced concrete. Proc 6th Int Conf Fract Mech Concr Concr Struct. p. 1341-9.

Metaxa, Z.S.; Seo, J.-W.T.; Konsta-Gdoutos, M.S.; Hersam, M.C.; Shah, S.P. (2012) Highly concentrated carbon nanotube admixture for nano-fiber reinforced cementitious materials. Cem. Concr. Compos. 34[5], 612-7. https://doi.org/10.1016/j.cemconcomp.2012.01.006

Shu, X.; Graham, R.K.; Huang, B.; Burdette, E.G. (2015) Hybrid effects of carbon fibers on mechanical properties of Portland cement mortar. Mater. Des. 65, 1222-8. . https://doi.org/10.1016/j.matdes.2014.10.015

Ozyurt, N.; Mason, T.O.; Shah, S.P. (2007) Correlation of fiber dispersion, rheology and mechanical performance of FRCs. Cem. Concr. Compos. 29[2], 70-9. https://doi.org/10.1016/j.cemconcomp.2006.08.006

Tran, T.K.; Kim, D.J.; Choi, E. (2014) Behavior of doubleedge- notched specimens made of high performance fiber reinforced cementitious composites subject to direct tensile loading with high strain rates. Cem. Concr. Res. 63, 54-66. https://doi.org/10.1016/j.cemconres.2014.05.003

Wu, Z.; Shi, C.; Khayat, K.H. (2016) Influence of silica fume content on microstructure development and bond to steel fiber in ultra-high strength cement-based materials (UHSC). Cem. Concr. Compos. 71, 97-109. https://doi.org/10.1016/j.cemconcomp.2016.05.005

Kawashima, S.; Shah, S.P. (2011) Early-age autogenous and drying shrinkage behavior of cellulose fiber-reinforced cementitious materials. Cem. Concr. Compos. 33[2], 201-8. https://doi.org/10.1016/j.cemconcomp.2010.10.018

Nishiwaki, T.; Kwon, S.; Homma, D.; Yamada, M.; Mihashi, H. (2014) Self-healing capability of fiber-reinforced cementitious composites for recovery of watertightness and mechanical properties. Materials (Basel). 7[3], 2141-54. https://doi.org/10.3390/ma7032141 PMid:28788560 PMCid:PMC5453282

Jarabo, R.; Fuente, E.; Monte, M.C.; Savastano, H.; Mutjé, P.; Negro, C. (2012) Use of cellulose fibers from hemp core in fiber-cement production. Effect on flocculation, retention, drainage and product properties. Ind. Crops Prod. 39, 89-96. https://doi.org/10.1016/j.indcrop.2012.02.017

Liu, X.; Yin, X.; Kong, L.; Li, Q.; Liu, Y.; Duan, W.; et al. (2013) Fabrication and electromagnetic interference shielding effectiveness of carbon nanotube reinforced carbón fiber / pyrolytic carbon composites. Carbon N. Y. 68, 501-10. https://doi.org/10.1016/j.carbon.2013.11.027

Le, A.T.; Gacoin, A.; Li, A.; Mai, T.H.; Rebay, M.; Delmas, Y. (2014) Experimental investigation on the mechanical performance of starch-hemp composite materials. Constr. Build. Mater. 61, 106-13. https://doi.org/10.1016/j.conbuildmat.2014.01.084

Shah, D.U. (2014) Natural fibre composites: Comprehensive Ashby-type materials selection charts. Mater. Des. 62, 21-31. https://doi.org/10.1016/j.matdes.2014.05.002

Fantilli, A.P.; Mihashi, H.; Vallini, P. (2007) Crack profile in RC, R/FRCC and R/HPFRCC members in tension. Mater. Struct. 40[10], 1099-114. https://doi.org/10.1617/s11527-006-9208-7

ASTM. (2012). ASTM C150-12 Standard specification for Portland cement.

Magniont, C.; Escadeillas, G.; Oms-Multon, C.; De Caro, P. (2010) The benefits of incorporating glycerol carbonate into an innovative pozzolanic matrix. Cem. Concr. Res. 40[7], 1072-80. https://doi.org/10.1016/j.cemconres.2010.03.009

Rongbing, B.; Jian, S. (2005) Synthesis and evaluation of shrinkage-reducing admixture for cementitious materials. Cem. Concr. Res. 35[3], 445-8. https://doi.org/10.1016/j.cemconres.2004.07.009

Ferro, G.A.; Ahmad, S.; Khushnood, R.A.; Restuccia, L.; Tulliani, J.-M. (2014) Improvements in self-consolidating cementitious composites by using micro carbonized aggregates. Frat. ed Integrita Strutt. 30, 75-83. https://doi.org/10.3221/IGF-ESIS.30.11

Musso, S.; Tulliani, J.-M.; Ferro, G.A.; Tagliaferro, A. (2009) Influence of carbon nanotubes structure on the mechanical behavior of cement composites. Compos. Sci. Technol. 69[11-12], 1985-90. https://doi.org/10.1016/j.compscitech.2009.05.002

Arabi, N. (2018) Static and cyclic performance of cementitious composites reinforced with glass-fibres. Mater. Construcción. 68[329], 146. https://doi.org/10.3989/mc.2018.10216

ASTM. (1997). ASTM C 1018-97 Standard test method for flexural toughness and first-crack strength of fiberreinforced concrete.

Ali, M. (2016) Use of coconut fibre reinforced concrete and coconut-fibre ropes for seismic-resistant construction. Mater. Construcción. 66[321], e073. https://doi.org/10.3989/mc.2016.01015

Ahmad, S.; Khushnood, R.A.; Jagdale, P.; Tulliani, J.-M.; Ferro, G.A. (2015) High performance self-consolidating cementitious composites by using micro carbonized bamboo particles. Mater. Des. 76, 223-9. https://doi.org/10.1016/j.matdes.2015.03.048

Khushnood, R.A.; Ahmad, S.; Savi, P.; Tulliani, J.-M.; Giorcelli, M.; Ferro, G.A. (2015) Improvement in electromagnetic interference shielding effectiveness of cement composites using carbonaceous nano/micro inerts. Constr. Build. Mater. 85, 208-16. https://doi.org/10.1016/j.conbuildmat.2015.03.069

Konsta-Gdoutos, M.S.; Metaxa, Z.S.; Shah, S.P. (2010) Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/ cement nanocomposites. Cem. Concr. Compos. 32[2], 110-5. https://doi.org/10.1016/j.cemconcomp.2009.10.007

Sanjuán, M.A.; Tolêdo Filho, R.D. (1998) Effectiveness of crack control at early age on the corrosion of steel bars in low modulussisal and coconut fibre-reinforced mortars. Cem. Concr. Res. 28[4], 555-65. https://doi.org/10.1016/S0008-8846(98)00003-9

Sanjuán, M.A.; Moragues, A. (1994) A testing method for measuring plastic shrinkage in polypropylene fibre reinforced mortars. Mater. Lett. 21[3-4], 239-46. https://doi.org/10.1016/0167-577X(94)90182-1

Filho, R.D.T.; Sanjuán, M.A. (1999) Effect of low modulus sisal and polypropylene fibre on the free and restrained shrinkage of mortars at early age. Cem. Concr. Res. 29[10], 1597-604. https://doi.org/10.1016/S0008-8846(99)00136-2

Sanjuán, M.A.; Moragues, A. (1997) Polypropylene-fibrereinforced mortar mixes: Optimization to control plastic shrinkage. Compos. Sci. Technol. 57[6], 655-60. https://doi.org/10.1016/S0266-3538(97)00012-2

James P. Romualdi and James A. Mandel.; Romualdi, J.P.; Mandel, J.A.; James P. Romualdi and James A. Mandel. (1964). Tensile strength of concrete affected by uniformly distributed and closely spaced short lengths of wire reinforcement. J Proc. p. 657-72.

Hannant, D.J. (1978) Fibre cements and fibre concrete. John Wiley Sons. PMid:749311

Li, J.; Kim, J.-K. (2007) Percolation threshold of conducting polymer composites containing 3D randomly distributed graphite nanoplatelets. Compos. Sci. Technol. 67[10], 2114-20. https://doi.org/10.1016/j.compscitech.2006.11.010

Celzard, A.; McRae, E.; Deleuze, C.; Dufort, M.; Furdin, G.; Marêché, J. (1996) Critical concentration in percolating systems containing a high-aspect-ratio filler. Phys. Rev. B. 53[10], 6209-14. https://doi.org/10.1103/PhysRevB.53.6209




Copyright (c) 2018 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es