Materiales de Construcción, Vol 69, No 333 (2019)

Artificial arenite from wastes of natural sandstone industry

C. Conde-Vázquez
Departamento de I+D. Areniscas Stone. Centro I+D. Vilviestre del Pinar, Spain

O. de Miguel-San Martín
Departamento de I+D. Areniscas Stone. Centro I+D. Vilviestre del Pinar, Spain

G. García-Herbosa
Química Inorgánica. Facultad de Ciencias. Universidad de Burgos, Spain


An artificial arenite was developed from the waste of the sandstone industry. The waste sandstone was treated to obtain different grain sizes that were recombined to reproduce the natural texture. An unsaturated polyester resin was added to the mixture of grains and the cement polymerization was initiated with methyl ethyl ketone peroxide. The product was compacted under pressure of 1.5 to 9.7 MPa and cured at 70 °C. The result was a new material with the appearance of the natural rock. Artificial sandstones were studied by SEM microanalysis, petrography study and XRF analysis. Measurements of flexural strength (9.9 MPa), apparent density (2110 kg/cm3), open porosity (7.6%), water absorption (1.2%), abrasion resistance (19 mm) and photostability (AE * = - 0.009) were carried out. The influence of the design of the mixture and its composition (fraction of aggregates, resin content and pressure) on the texture and the mechanical properties was studied.


Artificial sandstone; Waste treatment; Polyester polymer; Flexural strength; Mechanical properties

Full Text:



Pettijohn, F.J.; Potter, P.E.; Siever, R.; (1987) Sand and sandstone, Springer-Verlag, New York.

Folk, R.L.; (1974) Petrology of sedimentary rocks, Hemphill Publishing Company, Austin, Texas 78703.

Mocoroa, J. A.; (2010) Análisis de la procedencia en depósitos arenosos. Sedimentología: del proceso físico a la cuenca sedimentaria. , Ed A. Arche. CSIC, Madrid.

López-Gómez, J.; Arche, A.; De la Horra, R.; Galán-Abellán, B.; Barrenechea, J.F.; (2011) Permian-Triassic continental rocks of the SE Iberian Ranges: Architecture, tectonics and geochemical characteristics in the context of a rift basin, Post-Meeting Field trips Guidebook, 28th IAS Meeting GeoGuías. Journal of Iberian Geology, Zaragoza (Spain), pp. 11–43.

Bhatia, M.R.; (1983) Plate-tectonics and geochemical composition of sandstones. J. Geol. 91, 611–627.

Chang, J.C.; Liao, J.J.; Pan, Y.W.; (2008) Bearing behavior and failure mechanism of a shallow foundation located on/ behind the crest of a poorly cemented artificial Sandstone. Int. J. Rock Mech. Min. Sci. 45, 1508–1518.

T. Klimentos, A. Parker, (1988) The preparation (by an epoxy-resin method) and physical-properties of artificial sandstones. Sediment. Geol. 59, 307–312.

Tomkasic, I.; Krsinic, A.; (2010) Some important facts forestimation of natural stone deposits during the exploration, Global Stone Congress.

Stone Sector, (2010) Industria Italiana e Congiuntura Internazionale, (last accessed 19/09/2016).

Minerva, (2013) Estadísticas de producción minera/Rocas ornamentales, minerva/ GenerarInformes.aspx /(last accessed 19/09/2016).

Arribas, J.; Alonso, A.; Mas, R.; Tortosa, A.; Rodas, M.; Barrenechea, J.F.; Alonso-Azcárate, J.; Artigas, R.; (2003) Sandstone petrography of continental depositional sequences of an intraplate rift basin: Western Cameros Basin (North Spain). J. Sediment. Res. 73, 309–327.

González-Acebrón, L.; Arribas, J.; Mas, R.; (2007) Provenance of fluvial sandstones at the start of Late Jurassic– Early Cretaceous rifting in the Cameros Basin (N. Spain). Sediment. Geol. 202, 138–157.

Salomon, J.; (1982) Les formations continentales du bassin de Soria (NW chaines ibériques) au Jurassique superiur- Cretace inferior. Relations entre tectonique et sedimentation. J. Iber. Geol. 8, 167–185.

Barranechea, J.F.; Rodas, M.; Mas, J.R.; (1995) Clay mineral variations associated with diagenesis and lowgrade metamorphism of early Cretaceos sediments in the Cameros Basin, Spain. Clay Miner. 30, 119–133.

Ates, E.; Barnes, S.; (2012) The effect of elevated temperature curing treatment on the compression strength of composites with polyester resin matrix and quartz filler. Mater. Des. 34, 435–443.

Shirazi, E.K.; Marandi, R.; Afshar, N.; Alibabaie, M.; Sooki, A.; (2012) Reusing artificial stone waste in concrete as a filler of fine aggregates. J. Food, Agri. Environ. 10, 989–992.

Chang, F.C.; Lee, M.Y.; Lo, S.L.; Lin, J.D.; (2010) Artificial aggregate made from waste stone sluge ang waste silt. J. Environ. Manage. 91, 2289–2294.

Lee, M.Y.; Ko, C.H.; Chang, F.C.; Lin, J.D.; Shan, M.Y.; Lee, J.C.; (2008) Artificial stone slab production using waste glass, stone fragments and vacuum vibratory compaction. Cement Concrete Comp. 30, 583–587.

San-José, J.T.; Frías, M.; (2007) High performance polymer concrete. Mater. Construcc. 57, 29–39.

EN 12407, (2007) European Committee for Standardization. Natural stone test methods. Petrographic examination. AENOR.

EN12372, (2006) European Committee for Standardization. Natural stone test methods. Determination of flexural strength under concentrated load. AENOR.

EN 1936, (2006) European Committee for Standardization. Natural stone test methods. Determination of real density and apparent density, and of total and open porosity. AENOR.

EN 13755, (2008) European Committee for Standardization. Natural stone test methods. Determination of water absorption at atmospheric pressure. AENOR.

EN 14157, (2004) European Committee for Standardization. Natural stone test methods. Determination of the abrasion resistance. AENOR.

Conde Vázquez, C.;(2017) Síntesis de arenitas artificiales, Doctoral Thesis, Burgos University, Burgos.

Copyright (c) 2019 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support