Application of novel synthesized nanocomposites containing κ-carrageenan/PVA/eggshell in cement mortars




Nanocomposites, Nanoeggshell, κ-carrageenan, PVA, Cement mortar


This study is a preliminary attempt to present the preparation and the first time a κ-carrageenan/PVA/eggshell nanostructure is used as a novel biodegradable and homogeneous nanostructure in cement composition. In order to clearly understand the effects these additives have on the mechanical properties of cementitious composites, they were synthesized in double and triple combinations and added into mortar mixtures. Three different cement mortar specimens were prepared by integrating the additives in ratios of 0, 0.1, 0.5 and 1% by cement weight and flexural and compressive strengths of the specimens were determined at the ages of 7 and 28 days. The flowability of the presented nanostructures was also discussed. The results revealed a 10–11% increase in both compressive and flexural strengths for the specimens prepared with the triple combination of the proposed additives. Moreover, strain capacity was enhanced as a result of the efficient dispersion of additives in the cement matrix.


Download data is not yet available.


Hesami, S.; Ahmadi, S.; Nematzadeh, M. (2014) Effects of rice husk ash and fiber on mechanical properties of pervious concrete pavement. Constr. Build. Mater. 53, 680–691.

Aksoğan, O.; Binici, H.; Ortlek, E. (2016) Durability of concrete made by partial replacement of fine aggregate by colemanite and barite and cement by ashes of corn stalk, wheat straw and sunflower stalk ashes. Constr. Build. Mater. 106, 253–263.

Sada, B.H.; Amartey, Y.D.; Bako, S. (2013) An Investigation into the Use of Groundnut Shell as Fine Aggregate Replacement. Niger. J. Technol. 32, 54–60.

Olanipekun, E.A.; Olusola, K.O.; Ata, O. (2006) A comparative study of concrete properties using coconut shell and palm kernel shell as coarse aggregates. Build. Environ. 41, 297–301.

Pliya, P.; Cree, D. (2015) Limestone derived eggshell powder as a replacement in Portland cement mortar. Constr. Build. Mater. 95, 1–9.

Mine, Y. (2008) Egg Bioscience and Biotechnology. John Wiley & Sons, Inc. (2008).

Rivera, E.M.; Araiza, M.; Brostow, W.; Castaño, V.M.; Díaz-Estrada, J.R.; Hernández, R.; Rodríguez, J.R. (1999) Synthesis of hydroxyapatite from eggshells. Mater. Lett. 41, 128–134.

Beck, K.; Brunetaud, X.; Mertz, J.D.; Al-Mukhtar, M. (2010) On the use of eggshell lime and tuffeau powder to formulate an appropriate mortar for restoration purposes. Geol. Soc. Spec. Publ. 331, 137–145.

Freire, M.N.; Holanda, J.N.F.; (2006) Characterization of avian eggshell waste aiming its use in a ceramic wall tile paste. Cerâmica. 52, 240–244.

Siqueira, F.B.; Amaral, M.C.; Bou-Issa, R.A.; Holanda, J.N.F. (2016) Influence of industrial solid waste addition on properties of soil-cement bricks. Cerâmica. 62, 237–241.

Sola, O.C.; Atis, C.D. (2012) The effects of pyrite ash on the compressive strength properties of briquettes. KSCE J. Civ. Eng. 16, 1225–1229.

Shiferaw, N.; Habte, L.; Thenepalli, T.; Ahn, J.W. (2019) Effect of eggshell powder on the hydration of cement paste. Materials. 12, 2483.

Tiong, H.Y.; Lim, S.K.; Lee, Y.L.; Lim, J.H. (2018) Engineering properties of 1200 kg/m3 lightweight foames concrete with egg shell powder as partial replacement material of cement. E3S Web Conf. 65, 02010.

Gowsika, D.; Sarankokila, S.; Sargunan, K. (2014) Experimental investigation of egg shell powder as partial replacement with cement in concrete. Int. J. Eng. Trends Technol. 14, 65–68.

Yerramala, A. (2014) Properties of concrete with eggshell powder as cement replacement. Indian Concr. J. 88, 94–102.

Ujin, F.; Ali, K.S.; Harith, Z.Y.H. (2017) The effect of eggshells ash on the compressive strength of concrete. Key Eng. Mater. 728, 402–407.

Patel, P.S.; Parikh, K.B.; Darji, A.R. (2017) Study on concrete using fly ash, rice husk ash and egg shell powder. Int. J. Res. Appl. Sci. Eng. Technol. 5, 566–570.

Rahman, A.F.; Goh, W.I.; Mohamad, N.; Kamarudin, M.S.; Jhatial, A.A. (2019) Numerical analysis and experimental validation of reinforced foamed concrete beam containing partial cement replacement. Case Stud. Constr. Mater. 11, e00297.

Zheng, B.; Qian, L.; Yuan, H.; Xiao, D.; Yang, X.; Paau, M.C.; Choi, M.M.F. (2010) Preparation of gold nanoparticles on eggshell membrane and their biosensing application. Talanta. 82, 177–183.

Cui, T.-L.; He, J.-Y.; Liu, C.-S. (2020) High electrochemical performance carbon nanofibers with hierarchical structure derived from metal-organic framework with natural eggshell membranes. J. Colloid Interface Sci. 560, 811–816.

Khan, S.R.; Jamil, S.; Ali, S.; Khan, S.A.; Mustaqeem, M.; Janjua, M.R.S.A. (2020) Synthesis and structure of calcium-tin hybrid microparticles from eggshell and investigation of their thermal behavior and catalytic application. Chem. Phys. 530, 110613.

Pehlivan, A.O.; Karakuş, S.; Sanrı Karapınar, I.; Özsoy Özbay, A.E.; Yazgan, A.U.; Taşaltın, N.; Kilislioğlu, A. (2020) Effect of novel synthesized nanoeggshell on the properties of cementitious composites. J. Adv. Concr. Technol. 18, 294–306.

Ahmed, E.M. (2015) Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 6, 105–121.

Warson, H. (2000) Modern superabsorbent polymer technology. Polym. Int. 49, 1548–1548.

Justs, J.; Wyrzykowski, M.; Winnefeld, F.; Bajare, D.; Lura, P. (2014) Influence of superabsorbent polymers on hydration of cement pastes with low water-to-binder ratio: A calorimetry study. J. Therm. Anal. Calorim. 115, 425–432.

Kantro, D. (1980) Influence of water-reducing admixtures on properties of cement paste–A miniature slump test. Cem. Concr. Aggreg. 2, 95–102.

Pourjavadi, A.; Harzandi, A.M.; Hosseinzadeh, H. (2004) Modified carrageenan 3. Synthesis of a novel polysaccharide-based superabsorbent hydrogel via graft copolymerization of acrylic acid onto kappa-carrageenan in air. Eur. Polym. J. 40, 1363–1370.

Krafcik, M.J.; Erk, K.A. (2016) Characterization of superabsorbent poly (sodium-acrylate acrylamide) hydrogels and influence of chemical structure on internally cured mortar. Mater. Struct. 49, 4765–4778.

Mitsuiki, M.; Yamamoto, Y.; Mizuno, A.; Motoki, M. (1998) Glass transition properties as a function of water content for various low-moisture galactans. J. Agric. Food Chem. 46, 3528–3534.

Scriven, F. (1994) The glassy state in foods. Trends Food Sci. Technol. 5, 176.

Chronakis, I.S.; Piculell, L.; Borgström, J. (1996) Rheology of kappa-carrageenan in mixtures of sodium and cesium iodide: two types of gels. Carbohydr. Polym. 31, 215–225.

Liu, S.; Li, L. (2016) Thermoreversible gelation and scaling behavior of Ca2+-induced κ-carrageenan hydrogels. Food Hydrocoll. 61, 793–800.

Therkelsen, G.H. (1993) Carrageenan. In Industrial Gums: Polysaccharides and Their Derivatives: Third Edition. Elsevier Inc. 145–180.

Mechtcherine, V.; Gorges, M.; Schroefl, C; Assmann, A.; Brameshuber, W.; Ribeiro, A.B.; Cusson, D.; Custódio, J.; da Silva, E.F.; Ichimiya, K. et al. (2014) Effect of internal curing by using superabsorbent polymers (SAP) on autogenous shrinkage and other properties of a high-performance fine-grained concrete: results of a RILEM round-robin test. Mater. Struct. 47, 541–562.

Plank, J.; Sachsenhauser, B. (2009) Experimental determination of the effective anionic charge density of polycarboxylate superplasticizers in cement pore solution. Cem. Concr. Res. 39, 1–5.

Wang, F.; Zhou, Y.; Peng, B.; Liu, Z.; Hu, S. (2009) Autogenous shrinkage of concrete with super-absorbent polymer. ACI Mater. J. 106, 123–127.

Campo, V.L.; Kawano, D.F.; da Silva Jr., D.B.; Carvalho, I. (2009) Carrageenans: Biological properties, chemical modifications and structural analysis - A review. Carbohydr. Polym. 77, 167–180.

Ling, Y.; Zhang, P.; Wang, J.; Chen, Y. (2019) Effect of PVA fiber on mechanical properties of cementitious composite with and without nano-SiO2. Constr. Build. Mater. 229, 117068.

Zhang, P.; Li, Q-f.; Wang, J.; Shi, Y.; Ling, Y-f. (2019) Effect of PVA fiber on durability of cementitious composite containing nano-SiO2. Nanotechnol. Rev. 8 [1], 116–127.

Zhang, P.; Li, Q.; Wang, J.; Shi, Y.; Zheng, Y.; Ling, Y. (2020). Effect of nano-particle on durability of polyvinyl alcohol fiber reinforced cementitious composite. Sci. Adv. Mater. 12 [2], 249–262.

Ling, Y.F.; Zhang, P.; Wang, J.; Shi, Y. (2020) Effect of sand size on mechanical performance of cement-based composite containing PVA fibers and nano-SiO2. Materials. 13 [2], 325.

Tang, M-x.; Zhu, Y-d.; Li, D.; Adhikari, B.; Wang, L-j. (2019) Rheological, thermal and microstructural properties of casein/κ-carrageenan mixed systems. LWT. 113, 108296.

Madruga, L.Y.C.; Sabino, R.M.; Santos, E.C.G.; Popat, K.C.; Balaban, R. de C.; Kipper, M.J. (2020) Carboxymethyl-kappa-carrageenan: A study of biocompatibility, antioxidant and antibacterial activities. Int. J. Biol. Macromol. 152, 483–491.

Liu, Y.; Zhang, X.; Li, C.; Qin, Y.; Xiao, L.; Liu, J. (2020) Comparison of the structural, physical and functional properties of κ-carrageenan films incorporated with pomegranate flesh and peel extracts. Int. J. Biol. Macromol. 147, 1076–1088.

Berton, S.B.R.; de Jesus, G.A.M.; Sabino, R.M.; Monteiro, J.P.; Venter, S.A.S.; Bruschi, M.L.; Popat, K.C.; Matsushita, M.; Martin, A.F.; Bonafé, E.G. (2020) Properties of a commercial κ-carrageenan food ingredient and its durable superabsorbent hydrogels. Carbohydr. Res. 487, 107883.

Azizi, S.; Mohamad, R.; Rahim, R.A.; Mohammadinejad, R.; Ariff, A.B. (2017) Hydrogel beads bio-nanocomposite based on Kappa-Carrageenan and green synthesized silver nanoparticles for biomedical applications. Int. J. Biol. Macromol. 104, 423–431.

Campanella, L.; Favero, G.; Persi, L.; Tomassetti, M. (2000) New biosensor for superoxide radical used to evidence molecules of biomedical and pharmaceutical interest having radical scavenging properties. J. Pharmac. Biomed. Anal. 23, 69–76.

Spagnuolo, P.A.; Dalgleis, D.G.; Goff, H.D.; Morris, E.R. (2005) Kappa-carrageenan interactions in systems containing casein micelles and polysaccharide stabilizers. Food Hydrocoll. 19, 371–377.

Aday, A.N.; Osio-Norgaard, J.; Foster, K.E.O.; Srubar III, W.V. (2018) Carrageenan-based superabsorbent biopolymers mitigate autogenous shrinkage in ordinary portland cement. Mater. Struct. 51, 37.

Mahdavinia, G.R.; Massoudi, A.; Baghban, A.; Shokri, E. (2014) Study of adsorption of cationic dye on magnetic kappa-carrageenan/PVA nanocomposite hydrogels. J. Environ. Chem. Eng. 2, 1578–1587.

Hezaveh, H.; Muhamad, I.I. (2013) Controlled drug release via minimization of burst release in pH-response kappa-carrageenan/polyvinyl alcohol hydrogels. Chem. Eng. Res. Des. 91, 508–519.

Esmaeili, C.; Heng, L.Y.; Ling, Y.P.; Norouzi, P.; Ling, T.L. (2017) Potentiometric urea biosensor based on immobilization of urease in Kappa-Carrageenan biopolymer. Sens. Lett. 15, 851–857.

Li, J.-X.; Liu, D.; Qin, Z.-B.; Dong, G.-Y. (2019) Sonochemical synthesis of two nano-sized nickel(II) coordination polymers derived from flexible bis(benzimidazole) and isophthalic acid ligands. Polyhedron. 160, 92–100.

Xu, H.; Zeiger, B.W.; Suslick K.S. (2013) Sonochemical synthesis of nanomaterials. Chem. Soc. Rev. 42, 2555–2567.

Tan, E.; Karakus, S.; Soylu, G.S.P.; Birer, Ö.; Zengin, Y.; Kilislioglu, A. (2017) Formation and distribution of ZnO nanoparticles and its effect on E. coli in the presence of sepiolite and silica within the chitosan matrix via sonochemistry. Ultrason. Sonochem. 38, 720–725.

Karakuş, S. (2019) Preparation and rheological characterization of Chitosan-Gelatine@ZnO-Si nanoparticles. Int. J. Biol. Macromol. 137, 821–828.

Karakus, S.; Ilgar, M.; Kahyaoglu, I.M.; Kilislioglu, A. (2019) Influence of ultrasound irradiation on the intrinsic viscosity of guar gum–PEG/rosin glycerol ester nanoparticles. Int. J. Biol. Macromol. 141, 1118–1127.

Nagvenkar, A.P.; Deokar, A.; Perelshtein, I.; Gedanken, A. (2016) A one-step sonochemical synthesis of stable ZnO-PVA nanocolloid as a potential biocidal agent. J. Mater. Chem. B. 4, 2124–2132.

Wu, Y.D.; Wang, L.S.; Xiao, M.W.; Huang, X.J. (2008) A novel sonochemical synthesis and nanostructured assembly of polyvinylpyrrolidone-capped CdS colloidal nanoparticles. J. Non. Cryst. Solids. 354, 2993–3000.

Theerdhala, S.; Bahadur, D.; Vitta, S.; Perkas, N.; Zhong, Z.; Gedanken, A. (2010) Sonochemical stabilization of ultrafine colloidal biocompatible magnetite nanoparticles using amino acid, L-arginine, for possible bio applications. Ultrason. Sonochem. 17, 730–737.

Darroudi, M.; Zak, A.K.; Muhamad, M.R.; Huang, N.M.; Hakimi, M. (2012) Green synthesis of colloidal silver nanoparticles by sonochemical method. Mater. Lett. 66, 117–120.

Nagvenkar, A.P.; Perelshtein, I.; Piunno, Y.; Mantecca, P.; Gedanken, A. (2019) Sonochemical one-step synthesis of polymer-capped metal oxide nanocolloids: antibacterial activity and cytotoxicity. ACS Omega. 4, 13631–13639.

TSE (2010) TS EN 12390-6 - Testing hardened concrete - Part 6: Tensile splitting strength for test specimens, Ankara.

ASTM (2013) C1437 - Standard test method for flow of hydraulic cement mortar.

TSE (2010) TS EN 12390-7 - Testing hardened concrete - Part 7: Density of hardened concrete, Ankara.

TSE (2009) TS EN 196-1 - Methods of testing cement - Part 1: Determination of strength Ankara.

Tonelli, F.; Masuelli, M.A. (2019) Acacia caven gum studies of hydrodynamic parameters. Evolut. Polym. Technol. J. Res. Art. 2, 1–11.

Cherif, E. (2019) A new correlation of viscosity and conductivity for the polyelectrolyte solutions of poly(sodium styrene sulphonate) (PSSNa) in N,N-dimethylformamide + water. Phys. Chem. Liq.

Boulet, M.; Britten, M.; Lamarche, F. (1998) Voluminosity of some food proteins in aqueous dispersions at various pH and ionic strengths. Food Hydrocoll. 12 [4], 433–441.

Joseph, R.; Devi, S.; Rakshit, A.K. (1991) Viscosity behaviour of acrylonitrile-acrylate copolymer solutions in dimethyl formamide. Polym. Int. 26 [2], 89–92.

Khemthong, P.; Luadthong, C.; Nualpaeng, W.; Changsuwan, P.; Tongprem, P.; Viriya-Empikul, N.; Faungnawakij, K. (2012) Industrial eggshell wastes as the heterogeneous catalysts for microwave-assisted biodiesel production. Catal. Today. 190, 112–116.

Vichaphund, S.; Kitiwan, M.; Atong, D.; Thavorniti, P. (2011) Microwave synthesis of wollastonite powder from eggshells. J. Eur. Ceram. Soc. 31, 2435–2440.

Polat, S.; Sayan, P. (2020) Ultrasonic-assisted eggshell extract-mediated polymorphic transformation of calcium carbonate. Ultrason. Sonochem. 66, 105093.

Hassan, T.A.; Rangari, V.K.; Rana, R.K.; Jeelani, S. (2013) Sonochemical effect on size reduction of CaCO3 nanoparticles derived from waste eggshells. Ultrason. Sonochem. 20, 1308–1315.

Tizo, M.S.; Blanco, L.A.V.; Cagas, A.C.Q.; Dela Cruz, B.R.B.; Encoy, J.C.; Gunting, J. V.; Arazo, R.O.; Mabayo, V.I.F. (2018) Efficiency of calcium carbonate from eggshells as an adsorbent for cadmium removal in aqueous solution. Sustain. Environ. Res. 28, 326–332.

Choudhary, R.; Koppala, S.; Swamiappan, S. (2015) Bioactivity studies of calcium magnesium silicate prepared from eggshell waste by sol-gel combustion synthesis. J. Asian Ceram. Soc. 3, 173–177.

Jachimska, B.; Adamczyk, Z. (2007) Characterization of rheological properties of colloidal zirconia. J. Eur. Ceram. Soc. 27, 2209–2215.

Di Giuseppe, E.; Davaille, A.; Mittelstaedt, E.; François, M. (2012) Rheological and mechanical properties of silica colloids: from Newtonian liquid to brittle behaviour. Rheol. Acta. 51, 451–465.

van der Werff, J.C.; de Kruif, C.G. (1989) Hard-sphere colloidal dispersions: the scaling of rheological properties with particle size, volume fraction, and shear rate. J. Rheol. 33, 421–454.

Çiftçi, D.; Kahyaoglu,T.; Kapucu, S.; Kaya, S. (2008) Colloidal stability and rheological properties of sesame paste. J. Food Eng. 87, 428–435.

Karakus, S.; Ilgar, M.; Tan, E.; Müge Sahin, Y.; Tasaltin, N.; Kilislioglu, A. (2020) The viscosity behaviour of PEGylated locust bean gum/rosin ester polymeric nanoparticles. Colloid Sci. Pharmac. Nanotech. IntechOpen.

Asadi, A.; Pourfattah, F.; Miklós Szilágyi, I.; Afrand, M.; Żyła, G.; Seon Ahn, H.; Wongwises, S.; Minh Nguyen, H.; Arabkoohsar, A.; Mahian, O. (2019) Effect of sonication characteristics on stability, thermophysical properties, and heat transfer of nanofluids: A comprehensive review. Ultrason. Sonochem. 58, 104701.

Shadlou, S.; Wegner, L.D. (2016) Atomistic investigation of the effect of nano-structural shape on the mechanical response of SiC/Cu interpenetrating phase nanocomposites. Comput. Mater. Sci. 117, 428–436.

Arno, M.C.; Inam, M.; Weems, A.C.; Li, Z.; Binch, A.L.A.; Platt, C.I.; Richardson, S.M.; Hoyland, J.A., Dove, A.P.; O’Reilly, R.K. (2020) Exploiting the role of nanoparticle shape in enhancing hydrogel adhesive and mechanical properties. Nat. Commun. 11, 1420.

Amani, M.; Khorasani, M.H.M.; Ghamary, M.H. (2016) Effect of salinity on the viscosity of water based drilling fluids at elevated pressures and temperatures. Hamad bin Khalifa Univ. Press. 2016, EEPP2318.

Allahverdi, A.; Kianpur K.; Moghbeli, M.R. (2010) Effect of polyvinyl alcohol on flexural strength and some important physical properties of Portland cement paste. Iran. J. Mater. Sci. Eng. 7 [1], 1–6.

Kim, J.-H.; Robertson, R.E. (1998) Effects of polyvinyl alcohol on aggregate-paste bond strength and the interfacial transition zone. Adv. Cem. Based Mater. 8 [2], 66–76.

Knapen, E.; Van Gemert, D. (2006) Water-soluble polymers for modification of cement mortars. Int. Symp. Polym. Concr. Guimarães, Portugal, 85–93.

Gong, K.; Pan, Z.; Korayem, A. H.; Qiu, L.; Li, D.; Collins, F.; Wang, C. M.; Duan, W. H. (2015). Reinforcing effects of graphene oxide on Portland cement paste. J. Mater. Civil Engineer. 27 [2], 1–6.



How to Cite

Sanrı-Karapınar, I., Pehlivan, A. O., Karakuş, S., Özsoy-Özbay, A. E., Yazgan, A. U., Taşaltın, N., & Kilislioğlu, A. (2020). Application of novel synthesized nanocomposites containing κ-carrageenan/PVA/eggshell in cement mortars. Materiales De Construcción, 70(340), e235.



Research Articles