Studying the hydration kinetics and mechanical-microstructural properties of Portland cements made with and without dredged sediment: experimental and numerical approaches
DOI:
https://doi.org/10.3989/mc.2024.363223Keywords:
Sediment, Cement, Clinker, Modeling, Hydration, CEMHYD3DAbstract
This research focused on two objectives: (i) investigating the impacts of sediment substitution in the raw meal on the hydration and mechanical-microstructural properties of cement; (ii) assessing the reliability of CEMHYD3D code for modeling the properties of hydrated cement. The experimental results indicated that a maximum rate of sediment up to 7.55% had no impact on the formation of mineralogical phases of clinker, the hydration and mechanical-microstructural development of cement. The degree of hydration and strengths of cement made of sediment substitution were slightly higher than those of reference cement, whereas the critical diameter of pores of both hydrated cements was nearly identical. Comparing the modeling results with the experimental measurements showed good predictions for the degree of hydration, hydration heat as well as strength development. However, the formation of hemi-and mono-carboaluminate phases was not predicted in the model, and the porosity prediction was also limited to the capillary porosity.
Downloads
References
Gao T, Shen L, Shen M, Liu L, Chen F. 2016. Analysis of material flow and consumption in cement production process, J. Clean. Prod. 112(1):553-565. https://doi.org/10.1016/j.jclepro.2015.08.054
Roskos C, Cross D, Berry M, Stephens J. 2011. Identification and verification of self-cementing fly ash binders for "green" concrete. World of Coal Ash (WOCA) Conference.
National Minerals Information Center. 2013. Mineral commodity Summaries. U.S.G.S. U.S. Geological Survey. Retrieved From http://minerals.usgs.gov/minerals/pubs/mcs/.
Elchalakani M, Aly T, Abu-aisheh E. 2014. Sustainable concrete with high volume GGBFS to build Masdar City in the UAE. Case Stud. Constr. Mater. 1:10-24. https://doi.org/10.1016/j.cscm.2013.11.001
Snellings R, Horckmans L, Van Bunderen C, Vandewalle L, Cizer Ö. 2017. Flash-calcined dredging sediment blended cements: effect on cement hydration and properties, Mater. Struct. 50:241. https://doi.org/10.1617/s11527-017-1108-5
Benzerzour M, Maherzi W, Amar MAA, Abriak NE, Damidot D. 2018. Formulation of mortars based on thermally treated sediments. J. Mater. Cycles Waste Manag. 20:592-603. https://doi.org/10.1007/s10163-017-0626-0
Chu DC, Amar M, Kleib J, Benzerzour M, Damien B, Abriak N, Jaouad N. 2022. The pozzolanic activity of sediments treated by the flash calcination method. Waste Biomass Valorization. 13:4963-4982. https://doi.org/10.1007/s12649-022-01789-8
Amar M, Benzerzour M, Kleib J, Abriak N-E. 2021. From dredged sediment to supplementary cementitious material: characterization treatment and reuse. Int. J. Sediment Res. 36(1):92-109. https://doi.org/10.1016/j.ijsrc.2020.06.002
Chu DC, Kleib J, Amar M, Benzerzour M, Abriak N. 2022. Recycling of dredged sediment as a raw material for the manufacture of Portland cement - Numerical modeling of the hydration of synthesized cement using the CEMHYD3D code. J. Build. Eng. 48:103871. https://doi.org/10.1016/j.jobe.2021.103871
Aouad G, Laboudigue A, Gineys N, Abriak NE. 2012. Dredged sediments used as novel supply of raw material to produce Portland cement clinker. Cem. Concr. Compos. 34(6):788-793. https://doi.org/10.1016/j.cemconcomp.2012.02.008
Faure A, Coudray C, Anger B, Moulin I, Colina H, Izoret L, Théry F, Smith A. 2019. Beneficial reuse of dam fine sediments as clinker raw material. Constr. Build. Mater. 218:365-384. https://doi.org/10.1016/j.conbuildmat.2019.05.047
Bentz D. 2005. CEMHYD3D: A three-dimensional cement hydration and microstructure development modeling package. Version 3.0. NIST Interagency/Internal Report (NISTIR), National Institute of Standards and Technology, Gaithersburg, MD. https://doi.org/10.6028/NIST.IR.7232
Bentz DP. 2006. Capillary porosity depercolation/repercolation in hydrating cement pastes via low-temperature calorimetry measurements and CEMHYD3D modeling. J. Am. Ceram. Soc. 89(8):2606-2611. https://doi.org/10.1111/j.1551-2916.2006.01102.x
Bentz DP, Feng X, Haecker CJ, Stutzman PE. 2000. Analysis of CCRL proficiency cements 135 and 136 using CEMHYD3D. NISTIR 6545. National Institute of Standards and Technology (NITS). Retrieved from https://www.researchgate.net/publication/240236886_Analysis_of_CCRL_Proficiency_Cements_135_and_136_Using_CEMHYD3D. https://doi.org/10.6028/NIST.IR.6545
Bentz DP, Ferraris CF, Jones SZ, Lootens D, Zunino F. 2017. Limestone and silica powder replacements for cement: Early-age performance. Cem. Concr. Compos. 78:43-56. https://doi.org/10.1016/j.cemconcomp.2017.01.001 PMid:28503032 PMCid:PMC5424712
Bentz DP, Jensen OM, Hansen KK, Olesen JF, Stang H, Haecker CJ. 2004. Influence of cement particle-size distribution on early age autogenous strains and stresses in cement-based materials. J. Am. Ceramic Soc. 84(1):129-135. https://doi.org/10.1111/j.1151-2916.2001.tb00619.x
Bullard JW, Stutzman PE, Ordoñez Belloc LM, Garboczi EJ, Bentz DP. 2009. Virtual cement and concrete testing laboratory for quality testing and sustainability of concrete. Conference: Modeling as a Solution to Concrete Problems. ACI SP-266. Retrieved from https://www.researchgate.net/publication/241196517_Virtual_Cement_and_Concrete_Testing_Laboratory_for_Quality_Testing_and_Sustainability_of_Concrete.
Bullard JW, Ferraris CF, Garboczi EJ, Martys N, Stutzman PE. 2000. User's guide to the NIST virtual cement and concrete testing laboratory, Version 1.0. Retrieved from https://www.nist.gov/publications/users-guide-nist-virtual-cement-and-concrete-testing-laboratory-version-10.
van Breugel K. 1995. Numerical simulation of hydration and microstructural development in hardening cement-based materials (I) theory. Cem. Concr. Res. 25(2):319-331. https://doi.org/10.1016/0008-8846(95)00017-8
Qi T, Zhou W, Liu X, Wang Q, Zhang S. 2021. Predictive hydration model of Portland cement and its main minerals based on dissolution theory and water diffusion theory. Materials. 14(3):595. https://doi.org/10.3390/ma14030595 PMid:33513980 PMCid:PMC7865312
Bullard JW. 2007. Approximate rate constants for nonideal diffusion and their application in a stochastic model. J. Phys. Chem. A. 111(11):2084-2092. https://doi.org/10.1021/jp0658391 PMid:17388286
Thomas JJ, Biernacki JJ, Bullard JW, Bishnoi S, Dolado JS, Scherer GW, Luttge A. 2011. Modeling and simulation of cement hydration kinetics and microstructure development. Cem. Concr. Res. 41(12):1257-1278. https://doi.org/10.1016/j.cemconres.2010.10.004
Liu C, Wang F, Zhang M. 2020. Modelling of 3D microstructure and effective diffusivity of fly ash blended cement paste. Cem. Concr. Compos. 110:103586. https://doi.org/10.1016/j.cemconcomp.2020.103586
Taylor HFW. 1998. Cement chemistry. Second edition. Ed. Thomas Telford. London.
Schläpfer P, Bukowski R. Untersuchungen über die bestimmung des freien kalkes und des kalziumhydroxydes in zement-klinkern zementen schlacken und abgebundenen hydraulischen mörteln eidgenössische materialprüfungsanstalt an der E.T.H, in Zürich, 63.
Bogue RH, Lerch W. 1934. Hydration of portland cement compounds. Ind. Eng. Chem. 26(8):837-847. https://doi.org/10.1021/ie50296a007
Anger B. 2015. Caractérisation des sédiments fins des retenues hydroélectriques en vue d'une orientation vers des filières de valorisation matière. Conférence Méditerranéenne Côtière et Maritime Edition 3, Ferrara, Italia (2015). Retrieved from https://www.paralia.fr/cmcm/e03-20-anger.pdf. https://doi.org/10.5150/cmcm.2015.020
Zaki M, Sharma S, Gurjar SK, Goyal R, Jayadeva Krishnan NMA. 2023. Cementron: machine learning the alite and belite phases in cement clinker from optical images. Constr. Build. Mater. 397:132425. https://doi.org/10.1016/j.conbuildmat.2023.132425
Association Française de Normalisation (AFNOR). NF EN 197-1. 2012. Composition spécifications et critères de conformité des ciment courant.
Association Française de Normalisation (AFNOR). NF EN 196-6. 2018. Méthodes d'essai des ciments - Détermination de la finesse.
Association Française de Normalisation (AFNOR). NF EN 196-3. 2009. Methods of testing cements, Part 3 - Determination of setting times and soundness.
Dalton JL, Gardner KH, Seager TP, Weimer ML, Spear JCM, Magee BJ. 2004 Properties of Portland cement made from contaminated sediments. Resour. Conserv. Recycl. 41(3):227-241. https://doi.org/10.1016/j.resconrec.2003.10.003
Chu DC, Kleib J, Amar M, Benzerzour M, Abriak N-E. 2021. Determination of the degree of hydration of Portland cement using three different approaches: Scanning electron microscopy (SEM-BSE) and Thermogravimetric analysis (TGA). Case Stud. Constr. Mater. 15:e00754. https://doi.org/10.1016/j.cscm.2021.e00754
Bullard JW, Evans DL, Bond PJ. 2003. The virtual cement and concrete testing laboratory consortium. Annual Report 2003. https://doi.org/10.6028/NIST.IR.7096
Scrivener K, Snellings R, Lothenbach B. 2016. A practical guide to microstructural analysis of cementitious materials. Ed. Taylor & Francis Group. Crc Press Boca Raton F.L. USA.
Association Française de Normalisation (AFNOR). NF EN 196-1. 2016. Méthode d'essai des ciments- Partie 1: Détermination des résistance.
British Standards BS 1881: Part 124. 1988. British standard testing concrete. Part 124. Methods for analysis of hardened concrete.
Bentz DP. 2006. Modeling the influence of limestone filler on cement hydration using CEMHYD3D. Cem. Concr. Compos. 28(2):124-129. https://doi.org/10.1016/j.cemconcomp.2005.10.006
Bentz DP. 1997. Guide to using CEMHYD3D: A three-dimensional cement hydration and microstructure development modelling package. National Institute of standards and technology. Retrieved from https://www.researchgate.net/publication/237062671_Guide_to_using_CEMHYD3D_A_three-dimensional_cement_hydration_and_microstructure_development_modelling_package. https://doi.org/10.6028/NIST.IR.5977 PMCid:PMC1858003
Bentz DP, Ferraris CF, Galler MA, Hansen AS, Guynn JM. 2012. Influence of particle size distributions on yield stress and viscosity of cement-fly ash pastes. Cem. Concr. Res. 42(2):404-409. https://doi.org/10.1016/j.cemconres.2011.11.006
Beaudoin J, Odler I. Hydration setting and hardening of Portland cement. Elsevier Ltd. 2019. https://doi.org/10.1016/B978-0-08-100773-0.00005-8
Jansen D, Goetz-Neunhoeffer F, Stabler C, Neubauer J. A remastered external standard method applied to the quantification of early OPC hydration. Cem. Concr. Res. 2011;41(6):602-608. https://doi.org/10.1016/j.cemconres.2011.03.004
Bullard JW, Jennings HM, Livingston RA, Nonat A, Scherer GW, Schweitzer JS, Scrivener KL, Thomas JJ. 2011. Mechanisms of cement hydration. Cem. Concr. Res. 41(12):1208-1223. https://doi.org/10.1016/j.cemconres.2010.09.011
Zhang Z, Scherer GW, Bauer A. 2018. Morphology of cementitious material during early hydration. Cem. Concr. Res. 107:85-100. https://doi.org/10.1016/j.cemconres.2018.02.004
Richardson IG. 1999. Nature of C-S-H in hardened cements. Cem. Concr. Res. 29(8):1131-1147. https://doi.org/10.1016/S0008-8846(99)00168-4
Antoni M, Rossen J, Martirena F, Scrivener K. 2012. Cement substitution by a combination of metakaolin and limestone. Cem. Concr. Res. 42(12):1579-1589. https://doi.org/10.1016/j.cemconres.2012.09.006
Matschei T, Lothenbach B, Glasser FP. 2007. The role of calcium carbonate in cement hydration. Cem. Concr. Res. 37(4):551-558. https://doi.org/10.1016/j.cemconres.2006.10.013
Matschei T, Lothenbach B, Glasser FP. 2007. The AFm phase in Portland cement. Cem. Concr. Res. 37(2):118-130. https://doi.org/10.1016/j.cemconres.2006.10.010
De Weerdt K, Haha M, Ben Le Saout G, Kjellsen KO, Justnes H, Lothenbach B. 2011. Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash. Cem. Concr. Res. 41(3):279-291. https://doi.org/10.1016/j.cemconres.2010.11.014
Roy DM. Concrete: by Sidney Mindess and J, Francis Young, Prentice-Hall Inc, Englewood Cliffs.
Zhang S, Zhang M. 2006. Hydration of cement and pore structure of concrete cured in tropical environment. Cem. Concr. Res. 36(10):1947-1953. https://doi.org/10.1016/j.cemconres.2004.11.006
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.