Self-healing concrete-What Is it Good For?

Authors

DOI:

https://doi.org/10.3989/mc.2021.07320

Keywords:

Concrete, Durability, Microcracking, Transport properties, Mechanical properties

Abstract


Self-healing of concrete is the process in which the material regenerates itself repairing inner cracks. This process can be produced by autogenous or autonomous healing. Autogenous healing is a natural process, produced by carbonation and/or continuing hydration. Autonomous healing is based on the use of specific agents to produce self-healing, which can be added directly to the concrete matrix, embedded in capsules or introduced through vascular networks. Some examples are superabsorbent polymers, crystalline admixtures, microencapsulated sodium silicate, and bacteria. This review is structured into two parts. The first part is an overview of self-healing concrete that summarises the basic concepts and the main advances produced in the last years. The second part is a critical discussion on the feasibility of self-healing concrete, its possibilities, current weaknesses, and challenges that need to be addressed in the coming years.

Downloads

Download data is not yet available.

References

Damgaard Jensen, A.; Chatterji, S. (1996) State of the art report on micro-cracking and lifetime of concrete - Part 1. Mater. Struct. 29 [1], 3-8.

Speck, T.; Bauer, G.; Flues, F.; Oelker, K.; Rampf, M.; Schüssele, A.C.; et al. (2013) Chapter 16. Bio-inspired self-healing materials. In: Peter, Fratzl.; John, W.C. Dunlop; Weinkamer, R.; (Eds). Materials Design Inspired by Nature: Function Through Inner Architecture. The Royal Society of Chemistry. 359-389.

Speck, O.; Speck, T. (2019) An overview of bioinspired and biometric self-repairing materials. Biomimetics. 4 [1], 26.

Van Tittelboom, K.; De Belie, N. (2013) Self-healing in cementitious materials-A review. Mater. 6 [6], 2182-2217. .

Hearn, N. (1998) Self-sealing, autogenous healing and continued hydration: What is the difference? Mater. Struct. 31 [8], 563-567.

Souradeep, G.; Kua, H.W. (2016) Encapsulation technology and techniques in self-healing concrete. J. Mater. Civ. Eng. 28 [12], 1-15.

Ferrara, L.; Van Mullem, T.; Alonso, M.C.; Antonaci, P.; Borg, R.P.; Cuenca, E.; et al. (2018) Experimental characterization of the self-healing capacity of cement based materials and its effects on the material performance: A state of the art report by COST Action SARCOS WG2. Constr. Build. Mater. 167, 115-142.

Sánchez, M.; Faria, P.; Ferrara, L.; Horszczaruk, E.; Jonkers, H.M.; Kwiecień, A.; et al. (2018) External treatments for the preventive repair of existing constructions: A review. Constr. Build. Mater. 193, 435-452.

De Belie, N.; Gruyaert, E.; Al-Tabbaa, A.; Antonaci, P.; Baera, C.; Bajare, D.; et al. (2018) A review of self-healing concrete for damage management of structures. Adv. Mater. Inter. 5 [17], 1800074.

Vijay, K.; Murmu, M.; Deo, S.V. (2017) Bacteria based self healing concrete - A review. Constr. Build. Mater. 152, 1008-1014.

Edvardsen, C. (1999) Water permeability and autogenous healing of cracks in concrete. ACI Mater J. 96 [4], 448-454.

Snoeck, D.; Van den Heede, P.; Van Mullem, T.; De Belie, N. (2018) Water penetration through cracks in self-healing cementitious materials with superabsorbent polymers studied by neutron radiography. Cem. Concr. Res. 113, 86-98.

Sun, B.; Wu, H.; Song, W.; Li, Z.; Yu, J. (2019) Design methodology and mechanical properties of Superabsorbent Polymer (SAP) cement-based materials. Constr. Build. Mater. 204, 440-449.

He, Z.; Shen, A.; Guo, Y.; Lyu, Z.; Li, D.; Qin, X.; et al. (2019) Cement-based materials modified with superabsorbent polymers: A review. Constr. Build. Mater. 225, 569-590.

Mignon, A.; De Belie, N.; Dubruel, P.; Van Vlierberghe, S. (2019) Superabsorbent polymers: A review on the characteristics and applications of synthetic, polysaccharide-based, semi-synthetic and ‘smart’ derivatives. Eur. Polym. J. 117, 165-178.

Ferrara, L.; Krelani, V.; Carsana, M. (2014) A “fracture testing” based approach to assess crack healing of concrete with and without crystalline admixtures. Constr. Build. Mater. 68, 535-551.

Roig-Flores, M.; Pirritano, F.; Serna, P.; Ferrara, L. (2016) Effect of crystalline admixtures on the self-healing capability of early-age concrete studied by means of permeability and crack closing tests. Constr. Build. Mater. 114, 447-457.

Cuenca, E.; Tejedor, A.; Ferrara, L. (2018) A methodology to assess crack-sealing effectiveness of crystalline admixtures under repeated cracking-healing cycles. Constr. Build. Mater. 179, 619-632.

Kanellopoulos, A.; Giannaros, P.; Palmer, D.; Kerr, A.; Al-Tabbaa, A. (2017) Polymeric microcapsules with switchable mechanical properties for self-healing concrete: synthesis, characterisation and proof of concept. Smart. Mater. Struct. 26, 045025.

Beglarigale, A.; Seki, Y.; Demir, N.Y.; Yazıcı, H. (2018) Sodium silicate/polyurethane microcapsules used for self-healing in cementitious materials: Monomer optimization, characterization, and fracture behavior. Constr. Build. Mater. 162, 57-64.

Al-Tabbaa, A.; Litina, C.; Giannaros, P.; Kanellopoulos, A.; Souza, L. (2019) First UK field application and performance of microcapsule-based self-healing concrete. Constr. Build. Mater. 208, 669-685.

Dry, C.M. (2000) Three designs for the internal release of sealants, adhesives, and waterproofing chemicals into concrete to reduce permeability. Cem. Concr. Res. 30 [12], 1969-1977.

Van Tittelboom, K.; Adesanya, K.; Dubruel, P.; Van Puyvelde, P.; De Belie, N. (2011) Methyl methacrylate as a healing agent for self-healing cementitious materials. Smart Mater. Struct. 20, 125016.

Gilabert, F.A.; Van Tittelboom, K.; Van Stappen, J.; Cnudde, V.; De Belie, N.; Van Paepegem, W. (2017) Integral procedure to assess crack filling and mechanical contribution of polymer-based healing agent in encapsulation-based self-healing concrete. Cem. Concr. Compos. 77, 68-80.

Wiktor, V.; Jonkers, H.M. (2011) Quantification of crack-healing in novel bacteria-based self-healing concrete. Cem. Concr. Compos. 33 [7], 763-770.

Palin, D.; Wiktor, V.; Jonkers, H.M. (2016) A bacteria-based bead for possible self-healing marine concrete applications. Smart. Mater. Struct. 25, 084008.

Pawar, S.S.; Parekar, P.S.R. (2018) Bacteria based Self-Healing Concrete : Review. Inter. Res. J. Engi. Tech. 5 [3], 1001-1004.

Li, L.; Zheng, Q.; Li, Z.; Ashour, A.; Han, B. (2019) Bacterial technology-enabled cementitious composites: A review. Compos. Struct. 225, 111170.

De Rooij, M.R.; Schlangen, E.; Joseph, C. (2013) Introduction. In: de Rooij M., Van Tittelboom K., De Belie N., Schlangen E. (eds) Self-healing phenomena in cement-based materials. RILEM State-of-the-Art Reports, vol 11. Springer, Dordrecht.

Snoeck, D.; De Belie, N. (2012) Mechanical and self-healing properties of cementitious composites reinforced with flax and cottonised flax, and compared with polyvinyl alcohol fibres. Biosyst. Eng. 111 [4], 325-335.

Snoeck, D.; De Belie, N. (2016) Repeated autogenous healing in strain-hardening cementitious composites by using superabsorbent polymers. J. Mater. Civ. Eng. 28 [1], 1-11.

Roig-Flores, M.; Serna, P. (2020) Concrete early-age crack closing by autogenous healing. Sustain. 12 [11], 4476.

Sisomphon, K.; Copuroglu, O.; Koenders, E.A.B. (2012) Self-healing of surface cracks in mortars with expansive additive and crystalline additive. Cem. Concr. Compos. 34 [4], 566-574.

Wang, X.F.; Yang, Z.H.; Fang, C.; Han, N.X.; Zhu, G.M.; Tang, J.N.; et al. (2019) Evaluation of the mechanical performance recovery of self-healing cementitious materials - its methods and future development: A review. Constr. Build Mater. 212, 400-421.

Sangadji, S. (2017) Can self-healing mechanism helps concrete structures sustainable? Procedia Eng. 171, 238-249. https://doi.org/10.1016/j.proeng.2017.01.331.

Suleiman, A.R.; Nehdi, M.L. (2018) Effect of environmental exposure on autogenous self-healing of cracked cement-based materials. Cem. Concr. Res. 111, 197-208.

Yıldırım, G.; Khiavi, A.H.; Yeşilmen, S.; Şahmaran M. (2018) Self-healing performance of aged cementitious composites. Cem. Concr. Compos. 87, 172-186.

Desmettre, C.; Charron, J.P. (2012) Water permeability of reinforced concrete with and without fiber subjected to static and constant tensile loading. Cem Concr Res. 42 [7], 945-952.

Nishiwaki, T.; Kwon, S.; Homma, D.; Yamada, M.; Mihashi, H. (2014) Self-healing capability of fiber-reinforced cementitious composites for recovery of watertightness and mechanical properties. Mater. 7 [3], 2141-2154.

Plagué, T.; Desmettre, C.; Charron, J.P. (2017) Influence of fiber type and fiber orientation on cracking and permeability of reinforced concrete under tensile loading. Cem. Concr. Res. 94, 59-70.

Schlangen, E.; ter Heide, N.; van Breugel, K. (2007) Crack healing of early age cracks in concrete. In: Konsta-Gdoutos M.S. (eds) Measuring, monitoring and modeling concrete properties. Springer, Dordrecht. 273-284

Jefferson, A.; Joseph, C.; Lark, R.; Isaacs, B.; Dunn, S.; Weager, B. (2010) A new system for crack closure of cementitious materials using shrinkable polymers. Cem. Concr. Res. 40 [5], 795-801.

Jaroenratanapirom, D.; Sahamitmongkol, R. (2011) Self-crack closing ability of mortar with different additives. J. Met. Mater. Miner. 21 [1], 9-17.

Hearn, N.; Morley, C.T. (1997) Self-sealing property of concrete - Experimental evidence. Mater. Struct. 30, 404-411.

Huang, H.; Ye, G.; Damidot, D. (2013) Characterization and quantification of self-healing behaviors of microcracks due to further hydration in cement paste. Cem. Concr. Res. 52, 71-81.

Van Tittelboom, K.; Gruyaert, E.; Rahier, H.; De Belie, N. (2012) Influence of mix composition on the extent of autogenous crack healing by continued hydration or calcium carbonate formation. Constr. Build. Mater. 37, 349-359.

Darquennes, A.; Olivier, K.; Benboudjema, F.; Gagné, R. (2016) Self-healing at early-age, a way to improve the chloride resistance of blast-furnace slag cementitious materials. Constr. Build Mater. 113, 1017-1028.

Zhou, Z.H; Li, Z.Q.; Xu, D.J.; Yu, J.H. (2011) Influence of slag and fly ash on the self-healing ability of concrete. Advan. Mater. Research. 306-307, 1020-1023.

Na, S.H.; Hama, Y.; Taniguchi, M.; Katsura, O.; Sagawa, T.; Zakaria, M. (2012) Experimental investigation on reaction rate and self-healing ability in fly ash blended cement mixtures. J. Adv. Concr. Technol. 10 [7], 240-253.

Han, N.X.; Xing, F. (2017) A comprehensive review of the study and development of microcapsule based self-resilience systems for concrete structures at Shenzhen University. Mater. 10 [1], 2.

Sidiq, A.; Setunge, S.; Gravina, R.J.; Giustozzi, F. (2020) Self-repairing cement mortars with microcapsules: A microstructural evaluation approach. Constr. Build. Mater. 232, 117239.

Toledo Filho, R.D.; Ghavami, K.; Sanjuán, M.A.; England G.L. (2005) Free, restrained and drying shrinkage of cement mortar composites reinforced with vegetable fibres. Cem. Concr. Compos. 27 [5], 537-546.

Singh, H.; Gupta, R. (2020) Influence of cellulose fiber addition on self-healing and water permeability of concrete. Case Stud. Constr. Mater. 12, e00324.

Qian, S.Z.; Zhou, J.; Schlangen, E. (2010) Influence of curing condition and precracking time on the self-healing behavior of Engineered Cementitious Composites. Cem. Concr. Compos. 32 [9], 686-693.

Lee, H.X.D.; Wong, H.S.; Buenfeld, N.R. (2010) Potential of superabsorbent polymer for self-sealing cracks in concrete. Adv. Appl. Ceram. 109 [5], 296-302.

Tsuji, M.; Shitama, K.; Isobe, D. (1999) Basic studies on simplified curing technique, and prevention of initial cracking and leakage of water through cracks of concrete by applying superabsorbent polymers as new concrete admixture. Jour. Soci. Mater. Sci., Japan. 48 [11], 1308-1315.

Kang, S-H.; Hong, S-G.; Moon, J. (2018) Importance of monovalent ions on water retention capacity of superabsorbent polymer in cement based solutions. Cem. Concr. Compos. 88, 64-72.

Snoeck, D.; Schaubroeck, D.; Dubruel, P.; De Belie, N. (2014) Effect of high amounts of superabsorbent polymers and additional water on the workability, microstructure and strength of mortars with a water-to-cement ratio of 0.50. Constr. Build. Mater. 72, 148-157.

Hong, G.; Choi, S. (2017) Rapid self-sealing of cracks in cementitious materials incorporating superabsorbent polymers. Constr. Build. Mater. 143, 366-375.

Park, B.; Choi, Y.C. (2018) Self-healing capability of cementitious materials with crystalline admixtures and super absorbent polymers (SAPs). Constr. Build. Mater. 189, 1054-1066.

Snoeck, D.; Van Tittelboom, K.; Steuperaert, S.; Dubruel, P.; De Belie, N. (2014) Self-healing cementitious materials by the combination of microfibres and superabsorbent polymers. J. Intell. Mater. Syst. Struct. 25 [1], 13-24.

Roig-Flores, M.; Moscato, S.; Serna, P.; Ferrara, L. (2015) Self-healing capability of concrete with crystalline admixtures in different environments. Constr. Build. Mater. 86, 1-11.

Escoffres, P.; Desmettre, C.; Charron, J.P. (2018) Effect of a crystalline admixture on the self-healing capability of high-performance fiber reinforced concretes in service conditions. Constr. Build. Mater. 173, 763-774.

Sisomphon, K.; Copuroglu, O.; Koenders, E.A.B. (2013) Effect of exposure conditions on self healing behavior of strain hardening cementitious composites incorporating various cementitious materials. Constr. Build. Mater. 42, 217-224.

Chindasiriphan, P.; Yokota, H.; Pimpakan, P. (2020) Effect of fly ash and superabsorbent polymer on concrete self-healing ability. Constr. Build. Mater. 233, 116975.

Qureshi, T.S.; Al-Tabbaa, A. (2016) Self-healing of drying shrinkage cracks in cement-based materials incorporating reactive MgO. Smart Mater. Struct. 25 [8], 1-16.

Qureshi, T.; Kanellopoulos, A.; Al-Tabbaa, A. (2018) Autogenous self-healing of cement with expansive minerals-I: Impact in early age crack healing. Constr. Build. Mater. 192, 768-784.

Qureshi, T.; Kanellopoulos, A.; Al-Tabbaa, A. (2019) Autogenous self-healing of cement with expansive minerals-II: Impact of age and the role of optimised expansive minerals in healing performance. Constr. Build. Mater. 194, 266-275.

Alghamri, R.; Kanellopoulos, A.; Al-Tabbaa, A. (2016) Impregnation and encapsulation of lightweight aggregates for self-healing concrete. Constr. Build. Mater. 124, 910-921.

Qureshi, T.S.; Kanellopoulos, A.; Al-Tabbaa, A. (2016) Encapsulation of expansive powder minerals within a concentric glass capsule system for self-healing concrete. Constr. Build. Mater. 121, 629-643.

Tan, N.P.B.; Keung, L.H.; Choi, W.H.; Lam, W.C.; Leung, H.N. (2015) Silica-based self-healing microcapsules for self-repair in concrete. J. Appl. Polym. Sci. 133 [12], 43090.

Li, G.; Huang, X.; Lin, J.; Jiang, X.; Zhang, X. (2019) Activated chemicals of cementitious capillary crystalline waterproofing materials and their self-healing behaviour. Constr. Build. Mater. 200, 36-45.

Irico, S.; Bovio, A.G.; Paul, G.; Boccaleri, E.; Gastaldi, D.; Marchese, L.; et al. (2017) A solid-state NMR and X-ray powder diffraction investigation of the binding mechanism for self-healing cementitious materials design: The assessment of the reactivity of sodium silicate based systems. Cem. Concr. Compos. 76, 57-63.

Restuccia, L.; Reggio, A.; Ferro, G.A.; Tulliani, J.M. (2017) New self-healing techniques for cement-based materials. Procedia Struct. Integr. 3, 253-260.

Sidiq, A.; Gravina, R.J.; Setunge, S.; Giustozzi, F. (2019) Microstructural analysis of healing efficiency in highly durable concrete. Constr. Build. Mater. 215, 969-983.

Mao, W.; Litina, C.; Al-Tabbaa, A. (2020) Development and application of novel sodium silicate microcapsule-based self-healing oil well cement. Mater. 13 [2], 456.

Lv, L.; Guo, P.; Liu, G.; Han, N.; Xing, F. (2020) Light induced self-healing in concrete using novel cementitious capsules containing UV curable adhesive. Cem. Concr. Compos. 105, 103445.

Selvarajoo, T.; Davies, R.E.; Freeman, B.L.; Jefferson, A.D. (2020) Mechanical response of a vascular self-healing cementitious material system under varying loading conditions. Constr. Build. Mater. 254, 119245.

Du, W.; Yu, J.; Gu, Y.; Li, Y.; Han, X.; Liu, Q. (2019) Preparation and application of microcapsules containing toluene-di-isocyanate for self-healing of concrete. Constr. Build. Mater. 202, 762-769.

Hu, Z.X.; Hu, X.M.; Cheng, W.M.; Zhao, Y.Y.; Wu, M.Y. (2018) Performance optimization of one-component polyurethane healing agent for self-healing concrete. Constr. Build. Mater. 179, 151-159.

Anglani, G.; Tulliani, J-M.; Antonaci, P. (2020) Behaviour of pre-cracked self-healing cementitious materials under static and cyclic loading. Mater. 13 [5], 1149.

Perez, G.; Erkizia, E.; Gaitero, J.J.; Kaltzakorta, I.; Jiménez, I.; Guerrero, A. (2015) Synthesis and characterization of epoxy encapsulating silica microcapsules and amine functionalized silica nanoparticles for development of an innovative self-healing concrete. Mater. Chem. Phys. 165, 39-48.

Van Tittelboom, K.; De Belie, N.; Van Loo, D.; Jacobs, P. (2011) Self-healing efficiency of cementitious materials containing tubular capsules filled with healing agent. Cem. Concr. Compos. 33 [4], 497-505.

Nain, N.; Surabhi, R.; Yathish, N.V.; Krishnamurthy, V.; Deepa, T.; Tharannum, S. (2019) Enhancement in strength parameters of concrete by application of Bacillus bacteria. Constr. Build. Mater. 202, 904-908.

Huynh, N.N.T.; Phuong, N.M.; Toan, N.P.A.; Son, N.K. (2017) Bacillys subtilis HU58 immobilized in micropores of diatomite for using in self-helaing concrete. Procedia Eng. 171, 598-605.

Shaheen, N.; Khushnood, R.A.; Khaliq, W.; Murtaza, H.; Iqbal, R.; Khan, M.H. (2019) Synthesis and characterization of bio-immobilized nano/micro inert and reactive additives for feasibility investigation in self-healing concrete. Constr. Build. Mater. 226, 492-506.

De Belie, N. (2016) Application of bacteria in concrete: a critical evaluation of the current status. RILEM Tech. Lett. 1, 56-61.

Zhang, J.; Liu, Y.; Feng, T.; Zhou, M.; Zhao, L.; Zhou, A.; Li, Z. (2017) Immobilizing bacteria in expanded perlite for the crack self-healing in concrete. Constr. Build. Mater. 148, 610-617.

Zhang, J.; Zhao, C.; Zhou, A.; Yang, C.; Zhao, L.; Li, Z. (2019) Aragonite formation induced by open cultures of microbial consortia to heal cracks in concrete: Insights into healing mechanisms and crystal polymorphs. Constr. Build. Mater. 224, 815-822.

Liu, S.; Bundur, Z.B.; Zhu, J.; Ferron, R.D. (2016) Evaluation of self-healing of internal cracks in biomimetic mortar using coda wave interferometry. Cem. Concr. Res. 83, 70-78.

Jadhav, U.U.; Lahoti, M.; Chen, Z.; Qiu, J.; Cao, B.; Yang, E.H. (2018) Viability of bacterial spores and crack healing in bacteria-containing geopolymer. Constr. Build. Mater. 169, 716-723.

Singh, H.; Gupta, R. (2020) Cellulose fiber as bacteria-carrier in mortar: Self-healing quantification using UPV. J. Build. Eng. 28, 101090.

Wang, J.Y.; Soens, H.; Verstraete, W.; De Belie, N. (2014) Self-healing concrete by use of microencapsulated bacterial spores. Cem. Concr. Res. 56, 139-152.

Jonkers, H.M.; Thijssen, A.; Muyzer, G.; Copuroglu, O.; Schlangen, E. (2010) Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol. Eng. 36 [2], 230-235.

Reeksting, B.J.; Hoffmann, T.D.; Tan, L.; Paine, K.; Gebhard, S. (2020) In-depth profiling of calcite precipitation by environmental bacteria reveals fundamental mechanistic differences with relevance to application. Appl. Environ. Microbiol. 86 [7], e02739-19.

Da Silva, F.B.; De Belie, N.; Boon, N.; Verstraete, W. (2015) Production of non-axenic ureolytic spores for self-healing concrete applications. Constr. Build. Mater. 93, 1034-1041.

Silva, F.B.; Boon, N.; De Belie, N.; Verstraete, W. (2015) Industrial application of biological self-healing concrete: Challenges and economical feasibility. J. Commer. Biotechnol. 21 [1], 31-38.

Basilisk - Basilisk self-healing concrete. [consulted 2020 May 29]. Available from: https://www.basiliskconcrete.com.

Yang, Z.; Hollar, J.; He, X.; Shi, X. (2011) A self-healing cementitious composite using oil core/silica gel shell microcapsules. Cem. Concr. Compos. 33 [4], 506-512.

Van Tittelboom, K.; Tsangouri, E.; Van Hemelrijck, D.; De Belie, N. (2015) The efficiency of self-healing concrete using alternative manufacturing procedures and more realistic crack patterns. Cem. Concr. Compos. 57, 142-152.

Escobar, M.M.; Vago, S.; Vázquez, A. (2013) Self-healing mortars based on hollow glass tubes and epoxy-amine systems. Compos. Part B: Eng. 55, 203-207.

Joseph, C.; Jefferson, A.D.; Isaacs, B.; Lark, R.; Gardner, D. (2010) Experimental investigation of adhesive-based self-healing of cementitious materials. Mag. Concr. Res. 62 [11], 831-843.

Dry, C. (1994) Matrix cracking repair and filling using active and passive modes for smart timed release of chemicals from fibers into cement matrices. Smart Mater. Struct. 3 [2], 118-123.

Davies, R.; Teall, O.; Pilegis, M.; Kanellopoulos, A.; Sharma, T.; Jefferson, A.; et al. (2018) Large scale application of self-healing concrete: Design, construction, and testing. Front. Mater. 5.

Teall, O.; Davies, R.; Pilegis, M.; Kanellopoulos, A.; Sharma, T.; Paine, K.; et al. (2016) Self-healing concrete full-scale site trials. Proc. 11th fib Int. PhD Symp. Civ. Eng. FIB 2016.

Li, Z.; Souza, L.R; Litina, C.; Markaki, A.E.; Al-Tabbaa, A. (2019) Feasibility of using 3D printed polyvinyl alcohol (PVA) for creating sef-healing vascular tunnels in cement system. Mater. 12 [23], 3872.

Minnebo, P.; Thierens, G.; De Valck, G.; Van Tittelboom, K.; De Belie, N.; Van Hemelrijck, D.; et al. (2017) A novel design of autonomously healed concrete: Towards a vascular healing network. Mater. 10 [1], 49.

Schlangen, E.; Joseph, C. (2013) Modelling of self-healing cementitious materials. In: de Rooij M., Van Tittelboom K., De Belie N., Schlangen E. (eds) Self-Healing Phenomena in Cement-Based Materials. RILEM State-of-the-Art Reports, vol 11, 217-240. Springer, Dordrecht.

Ismail, M.; Toumi, A.; François, R.; Gagné, R. (2008) Effect of crack opening on the local diffusion of chloride in cracked mortar samples. Cem. Concr. Res. 38 [8-9], 1106-1111. https://doi.org/10.1016/j.cemconres.2008.03.009.

Snoeck, D.; Steuperaert, S.; Van Tittelboom, K.; Dubruel, P.; De Belie, N. (2012) Visualization of water penetration in cementitious materials with superabsorbent polymers by means of neutron radiography. Cem. Concr. Res. 42 [8], 1113-1121. https://doi.org/10.1016/j.cemconres.2012.05.005.

Van Belleghem, B.; Montoya, R.; Dewanckele, J.; Van Den Steen, N.; De Graeve, I.; Deconinck, J.; et al. (2016) Capillary water absorption in cracked and uncracked mortar - A comparison between experimental study and finite element analysis. Constr. Build. Mater. 110, 154-162.

Cuenca, E.; Ferrara, L. (2020) Fracture toughness parameters to assess crack healing capacity of fiber reinforced concrete under repeated cracking-healing cycles. Theor. Appl. Fract. Mech. 106, 102468.

Yang, Y.; Yang, E.H.; Li, V.C. (2011) Autogenous healing of engineered cementitious composites at early age. Cem. Concr. Res. 41 [2], 176-183.

Yang, Y.; Lepech, M.D.; Yang, E.H.; Li, V.C. (2009) Autogenous healing of engineered cementitious composites under wet-dry cycles. Cem. Concr. Res. 39 [5], 382-390.

Yildirim, G.; Sahmaran, M.; Ahmed, H.U. (2015) Influence of hydrated lime addition on the self-healing capability of high-volume fly ash incorporated cementitious composites. J. Mater. Civ. Eng. 27 [6].

Zhong, W.; Yao, W. (2008) Influence of damage degree on self-healing of concrete. Constr. Build. Mater. 22 [6], 1137-1142.

Shahid, K.A.; Jaafar, M.F.M.; Yahaya, F.M. (2014) Self-healing behaviour of pre-cracked POFA-concretes in different curing conditions. J. Mech. Eng. Sci. 7 [1], 1227-1235.

Karaiskos, G.; Tsangouri, E.; Aggelis, D.G.; Van Tittelboom, K.; De Belie, N.; Van Hemelrijck, D. (2016) Performance monitoring of large-scale autonomously healed concrete beams under four-point bending through multiple non-destructive testing methods. Smart Mater. Struct. 25 [5], 055003.

Granger, S.; Loukili, A.; Pijaudier-Cabot, G.; Chanvillard, G. (2007) Experimental characterization of the self-healing of cracks in an ultra high performance cementitious material: Mechanical tests and acoustic emission analysis. Cem. Concr. Res. 37 [4], 519-527.

Van Tittelboom, K.; De Belie, N.; Lehmann, F.; Grosse, C.U. (2012) Acoustic emission analysis for the quantification of autonomous crack healing in concrete. Constr. Build. Mater. 28 [1], 333-341.

Hannant, D.J.; Keer, J.G. (1983) Autogenous healing of thin cement based sheets. Cem. Concr. Res. 13 [3], 357-365. https://doi.org/10.1016/0008-8846(83)90035-2.

Silva, E.F.; Moreira, M.; Manzano M.A.R.; Blanco, R. (2016) Case study of permeability-reducing admixture use in anti-flotation slabs: building in Brasilia, Brazil. J. Build Pathol. Rehabil. 2, 1.

Sierra-Beltran, M.G.; Jonkers, H.M.; Mors, R.M.; Mera-Ortiz, M. (2015) Field application of self-­healing concrete with natural fibres as linings for irrigation canals in Ecuador. ICSHM 2015: Proceedings of the 5th International Conference on Self-Healing Materials, Durham, USA, 22-24 June 2015.

Mors, R.; Jonkers, H.M. (2019) Bacteria-based self-healing concrete: evaluation of full scale demonstrator projects. RILEM Tech. Lett. 40, 138-144.

Al-Tabbaa, A.; Lark, B.; Paine, K.; Jefferson, T.; Litina, C.; Gardner, D.; et al. (2018) Biomimetic cementitious construction materials for next-generation infrastructure. Proc. Inst. Civ. Eng. - Smart Infrastruct. Constr. 171 [2], 67-76.

Van Mullem, T.; Gruyaert, E.; Caspeele, R.; De Belie, N. (2020) First large scale application with self-healing concrete in belgium: Analysis of the laboratory control tests. Materials. 13 [4], 997.

Serna, P.; Lo Monte, F.; Mezquida-Alcaraz, E.J.; Cuenca, E.; Mechtcherine, V.; Reichardt, M.; et al. (2019) Upgrading the concept of UHPFRC for high durability in the cracked state: the concept of ultra high durability concrete (UHDC) in the approach of the H2020 project ReSHEALience. Sustainable Materials Systems and Structures SMSS 2019, Rovinj, Croatia, 20-22 March 2019.

Jefferson, T.; Javierre, E.; Freeman, B.; Zaoui, A.; Koenders, E.; Ferrara, L. (2018) Research progress on numerical models for self-healing cementitious materials. Adv. Mater. Interfaces. 5 [17], 1701378.

Van Belleghem, B.; Van den Heede, P.; Van Tittelboom, K.; De Belie, N. (2017) Quantification of the service life extension and environmental benefit of chloride exposed self-healing concrete. Mater. 10 [1], 5.

Helene, P.; Guignone, G.; Vieira, G.; Roncetti, L.; Moroni, F. (2018) Evaluation of the chloride penetration and service life of self-healing concretes activated by crystalline catalyst. Rev. IBRACON Estrut. Mater. 11 [3], 544-563.

Van den Heede, P.; Mignon, A.; Habert, G.; De Belie, N. (2018) Cradle-to-gate life cycle assessment of self-healing engineered cementitious composite with in-house developed (semi-)synthetic superabsorbent polymers. Cem. Concr. Compos. 94, 166-180.

van der Zwaag, S. (2007) An introduction to material design principles: damage prevention versus damage management. In: van der Zwaag S. (eds) Self Healing Materials. Springer Series in Materials Science, vol 100, 1-18. Springer, Dordrecht.

Mohammadreza Hassani, E.; Vessalas, K.; Sirivivatnanon, V.; Baweja, D. (2017) Influence of permeability-reducing admixtures on water penetration in concrete. ACI Mater. J. 114 [6], 911-922.

Pazderka, J.; Hájková, E. (2016) Crystalline admixtures and their effect on selected properties of concrete. Acta Polytech. 56 [4], 306-311.

Van Mullem, T.; Anglani, G.; Dudek, M.; Vanoutrive, H.; Bumanis, G.; Litina, C.; et al. (2020) Addressing the need for standardization of test methods for self-healing concrete : an inter-laboratory study on concrete with macrocapsules. Sci. Technol. Advanc. Mater. 21 [1], 661-682.

Schlangen, E.; Sangadji, S. (2013) Addressing infrastructure durability and sustainability by self healing mechanisms - Recent advances in self healing concrete and asphalt. Proce. Engin. 54, 39-57.

Gardner, D.; Lark, R.; Jefferson, T.; Davies, R. (2018) A survey on problems encountered in current concrete construction and the potential benefits of self-healing cementitious materials. Case Stud. Constr. Mater. 8, 238-247.

Neville, A. (2000) Water and concrete: a love-hate relationship. Concr. Int. 22 [12], 34-38.

Roig-Flores, M. (2018) Self-healing concrete : efficiency evaluation and enhancement with crystalline admixtures. Universitat Politècnica de València - PhD Thesis.

Li, V.C.; Herbert, E. (2012) Robust self-healing concrete for sustainable infrastructure. J. Adv. Concr. Technol. 10, [6], 207-218.

Shanmuga Priya, T.; Ramesh, N.; Agarwal, A.; Bhusnur, S.; Chaudhary, K. (2019) Strength and durability characteristics of concrete made by micronized biomass silica and Bacteria-Bacillus sphaericus. Constr. Build. Mater. 226, 827-838.

Nguyen, T.H.; Ghorbel, E.; Fares, H.; Cousture, A. (2019) Bacterial self-healing of concrete and durability assessment. Cem. Concr. Compos. 104, 103340. https://doi.org/10.1016/j.cemconcomp.2019.103340.

Siddique, R.; Singh, K.; Kunal, P.; Singh, M.; Corinaldesi, V.; Rajor, A. (2016) Properties of bacterial rice husk ash concrete. Constr. Build. Mater. 121, 112-119.

Huseien, G.F.; Shah, K.W.; Sam, A.R.M. (2019) Sustainability of nanomaterials based self-healing concrete: An all-inclusive insight. J. Build. Eng. 23, 155-171.

Published

2021-03-09

How to Cite

Roig-Flores, M. ., Formagini, S. ., & Serna, P. . (2021). Self-healing concrete-What Is it Good For?. Materiales De Construcción, 71(341), e237. https://doi.org/10.3989/mc.2021.07320

Issue

Section

Research Articles