Materiales de Construcción, Vol 60, No 299 (2010)

Properties and durability of metakaolin blended cements

Salah A. Abo-El-Enein
Ein Shams University, Cairo, Egypt

Rafik Abbas
Alexandria University, Alexandria, Egypt

El-Sayed Ezzat
Suez Cement Company, Suez, Egypt


This paper evaluates the optimal calcination temperature and replacement ratio to ensure high metakaolin (MK) pozzolanicity in blended cement. The MK used was prepared by firing two types of local at temperatures ranging from 700 to 850 ºC. Dry blends of ordinary Portland cement (OPC) and varying proportions of MK were mixed with the amount of water required to ensure optimal consistency of the resulting pastes. The specimens were cured at 100% RH for 24 h and then immersed in water for 3, 7, 28, 90 or 180 days. At each test time, the degree of hydration and compressive strength of the hardened cement pastes were measured The findings showed that the most suitable calcination temperature to obtain metakaolin is 700 ºC, while the optimal replacement ratio ranges from 25 to 30%. DTA was used to determine the phases comprising the hydration products forming at the ages studied. Pure OPC and OPC-MK specimens were immersed in 3% NaCl and 5% MgSO4 solutions for 30, 90 and 180 days to measure their durability. The OPC-MK pastes immersed in the 3% NaCl solution were observed to be highly resistant to chloride attack.


blended cement; metakaolin; strength; durability; microstructure

Full Text:



(1) Poon, C. S.; Kou, S. C.; Lam, L.: “Compressive strength, chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete”. Construction and Building Materials, vol. 20 (2006), pp. 858-865. doi:10.1016/j.conbuildmat.2005.07.001

(2) Kingery, W. D.; Uhlamann, D. R.; Bowen, H. K.: Introduction to Ceramics. 2nd ed., John Wily and Sons, New York, 1976.

(3) Moulin, E.; Blanc, P.; Sorrentino, D.: “Influence of key cement chemical parameters on the properties of metakaolin blended cement”. Cement andConcrete Composites, vol. 23, nº 6 (2001), pp. 463-469.

(4) Saynam, R. A.; Kalsotra, A. K.; Mehta, S. K.; Sing, R. S.; Mandal, G.: “Studies on thermal transformations and pozzolanic activities of clay from Jammu region (India)”. Journal of Thermal Analysis, vol. 35 (1989), pp. 99-106. doi:10.1007/BF01914268

(5) Ambroise, J.; Murat, M.; Pera, J.: “Investigations on synthetic binders obtained by middle-temperature thermal dissociation of clay minerals”. Silicate Industries, vol. 7, nº 8 (1986), pp. 107-111.

(6) Ambroise, J.; Murat, M.; Pera, J.: “Hydration reaction and hardening of calcined clays and related minerals: extension of the research and general conclusions”. Cem. Concr. Res., vol. 15 (1985), pp. 261-268. doi:10.1016/0008-8846(85)90037-7

(7) Bensted, J.; Barnes, P.: “Structure and Performance of Cements”. 2nd ed., Spon press, New York, 2002.

(8) Chandrasekhar, S.; Ramaswamy, S.: “Influence of mineral impurities on the properties of kaolin and its thermally treated products”. Applied ClayScience, vol. 21 (2002), pp. 133-142. doi:10.1016/S0169-1317(01)00083-7

(9) Ding, J.; Li, Z.: “Effects of metakaolin and silica fume on properties of concrete”. ACI Materials Journal, vol. 99, nº 4 (2002), pp. 393-398.

(10) Torres, J.; Mejía de Gutiérrez, R.; Puertas, F.: “Effect of kaolin treatment temperature on mortar chloride permeability”. Mater. Construcc., vol. 57, nº 285 (2007), pp. 61-69.

(11) Serry, M. A.; Taha, A. S.; El-Hemaly, S. A. S.; El-Didamony, H.: “MK-Lime Hydrations Product”. Thermochimica Acta, vol. 79 (1984), pp. 103-110. doi:10.1016/0040-6031(84)87097-5

(12) Serry, M. A.: “Influence of calcination conditions on the hydration of MK-lime”. Silicate Industry, vol. 5-6 (1987), pp. 2687-2648.

(13) Frías, M.; Cabrera, J.: “Influence of MK on the reaction kinetics in MK/lime and MK-blended cement systems at 20 °C”. Cem. Concr. Res., vol. 31 (2001), pp. 519-527. doi:10.1016/S0008-8846(00)00465-8

(14) Sánchez de Rojas, M. I.; Cabrera, J.: “The effect of temperature on the hydration rate and stability of the hydration phases of metakaolin-lime-water systems”. Cem. Concr. Res., vol. 32 (2002), pp. 133-138. doi:10.1016/S0008-8846(01)00642-1

(15) Morsy, M. S.: “Effect of temperature on hydration kinetics and stability of hydration phases of metakaolin-lime sludge-silica fume system”, Housing and Building Research Center Journal, vol. 1, pp. 114-126 (2005).

(16) Frías, M.; Sánchez de Rojas, M. I.; Cabrera, J.: “The effect that the pozzolanic reaction of metakaolin has on the heat evolution in MK- cement mortar”. Cem. Concr. Res., vol. 30 (2000), pp. 209-216. doi:10.1016/S0008-8846(99)00231-8

(17) De Silva, P. S.; Glasser, F. G.: “Phase relations in the system Cao-Al2O3-SiO2-H2O relevant to MK-lime hydration”. Cem. Concr. Res., vol. 23 (1993), pp. 627-639. doi:10.1016/0008-8846(93)90014-Z

(18) De Silva, P. S.; Glasser, F. G.: “Hydration of cements dased on MK: thermochemistry”. Aadvanced Cement Research, vol. 4, nº 16 (1992), pp. 167-178.

(19) Taha, A. S.; El-Didamony, H.; Abo-El-Enein, S. A.; Ame, A.: “Physicochemical properties of super sulfated cement paste. Zement-Kalk-Gips”, vol. 34 (1981), pp. 351-353.

(20) Colman, N. J.; Mcwhinnie, W. R.: “The solid state chemistry of metakaolin-blended ordinary Portland cement”. Journal of Material Science, vol. 35 (2000), pp. 2701-2710. doi:10.1023/A:1004753926277

(21) Sha, W.: “Differential Scanning Calorimetry study of the hydration products in Portland cement wastes with metakaolin replacement.” Proceeding of the International Conference on Advances in Building Technology, vol. 1 (2002), pp. 881-888.

(22) Lee, S. T.; Moon, H. Y.; Hooton, R. D.; Kim, J. P.: “Effect of solution concentrations and replacement levels of metakaolin on the resistance of mortars exposed to magnesium sulfate solution”. Cem. Concr. Res., vol. 35 (2005), pp. 1314-1323. doi:10.1016/j.cemconres.2004.10.035

Copyright (c) 2010 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support