Materiales de Construcción, Vol 61, No 303 (2011)

Rheology and zeta potential of cement pastes containing calcined silt and ground granulated blast-furnace slag

B. Safi
Research Materials Unit, Processes and Environment UR MPE/ Laboratory of Dispersed Medium Rheology/ University of Boumerdes, Algeria

A. Benmounah
Research Materials Unit, Processes and Environment UR MPE/ Laboratory of Dispersed Medium Rheology/ University of Boumerdes, Algeria

M. Saidi
Research Materials Unit, Processes and Environment UR MPE/ Laboratory of Dispersed Medium Rheology/ University of Boumerdes, Algeria


This study aimed to analyse the re-use of dam silt as a supplementary binder for self-compacting concrete (SCC). When burnt, silt becomes more reactive because the kaolin it contains is converted into metakaolin. Portland cement, calcined or burnt silt and ground granulated blast furnace slag were used in this research. Cement pastes were prepared with blends containing two or three of these materials. The replacement ratio for burnt silt in both cases was 10 % and 20 % by cement weight and the ratio for the slag was a constant 30 % by weight of the blend. Rheological and zeta potential tests were conducted to evaluate paste electrokinetics and rheological behaviour. The findings showed that burnt silt is apt for use as an addition to cement for SCC manufacture.


dam silt; cement paste; rheological behaviour; zeta potential; plastic viscosity; shear stress

Full Text:



(1) R.I.A. Malek, D.M. Roy, Modeling the rheological behavior of cement pastes: a review, Advances in Cementitious Materials Ceramic Transactions, The American Ceramic Society, Westerville, OH, (1991), pp. 31–40.

(2) F. De Larrard, C.F. Ferraris, T. Sedran, Fresh concrete: a Herschel Bulkley material, Materials and Structures 31 (1998) 494– 498

(3) C.F. Ferraris and N.S. Martys, De la pâte de ciment au béton: modélisation et mesures expérimentales des propriétés rhéologiques, National Institute of Standards and Technology, Gaithersburg, MD 20899 USA, 36éme Colloque GFR, vol. 10, no. 12, (2001), pp. 226-230.

(4) F. Lange, N. Mörtel, V. Rudert, Dense packing of cement pastes and resulting consequences on mortar properties, Cem. Concr. Res. Vol. 27, no.10, (1997) 1481-1488

(5) C. F. Ferraris, H.O. Karthik, H. Russell The influence of mineral admixtures on the rheology of cement paste and concrete, Cement and Concrete Research., vol. 31 (2001) 245±255

(6) Khatib J.M.,Wild S., Pore size distribution of MK paste, Cem. Concr. Res. 26 (10) (1996) 1545± 1553.

(7) Sabir BB, Wild S, Bai J. Metakaolin and calcined clay as pozzolans for concrete: a review. Cement Concrete Compos; vol. 16, (2001), p. 441–54.

(8) Jian-Tong D, Zongjin L. Effects of metakaolin and silica fume on properties of concrete. ACI Mater J vol. 99, (2002), pp. 393–8.

(9) Wild S, Khatib JM, Jones A. Relative strength pozzolanic activity and cement hydration in superplasticised metakaolin concrete. Cement Concrete Res vol. 26 (1996), pp.1537–44.

(10) Poon CS, Lama L, Koua SC, Wonga YL, Wong R. Rate of pozzolanic reaction of metakaolin in high-performance cement pastes. Cement Concrete Res vol. 31, no. 9 (2001), pp.1301–6.

(11) Ding JT, Li Z. Effects of metakaolin and silica fume on properties of concrete. ACI Mater J vol. 99, no. 4, (2002); pp. 393–8.

(12) Wild S, Khatib JM, Jones A. Relative strength, pozzolanic activity and cement hydration in superplasticised metakaolin concrete. Cement Concrete Res vol. 26, no. 10 (1996); pp. 1537–44.

(13) Wild S, Khatib JM. Portlandite consumption in metakaolin cements pastes and mortars. Cement Concrete Res vol. 27, no 1, (1997) pp.37–46.

(14) Gruber KA, Ramlochan T, Boddy A, Hooton RD, Thomas MDA. Increasing concrete durability with high-reactivity metakaolin. Cement Concrete Comp vol. 23, no. 6, (2001) pp.479–84.

(15) Aquino W, Lange DA, Olek J. The influence of metakaolin and silica fume on the chemistry of alkali–silica reaction products. Cement Concrete Comp vol. 23, no. 6, (2001), pp. 485–93.

(16) Gûneyisi E, Gesoglu M and Mermerdas K. Improving strength, drying shrinkage, and pore structure of concrete using metakaolin, Materials and Structures vol. 41 (2008):937–949.

(17) A. Semcha, Valorisation des sédiments de dragage : Applications dans le BTP, cas du barrage de Fergoug., Thèse doctorat, UFR sciences, Université de Reims- France, (2006)

(18) Bibi M, Chicouhe MA, Ait Tahar K. Influence des ajouts d’argiles gréseuses ou/et vaseuses sur les propriétés des matériaux cimentaires, Matériaux & Techniques vol 96, 4-5 (2008) pp. 165-172

(19) Belas N, Besseghier N, Mebrouki A, Bouhamou N. Vers une protection de l’environnement en valorisant la vase draguée du barrage comme composant du béton. Matériaux & Techniques; vol. 97, no. 4 (2009) pp. 231-240.

(20) M.Y.A. Mollah, W.J. Adams, R. Schennach, D.L. Cocke, A review of cement–superplasticizer interactions and their models, Adv Cem Res vol. 12 (2000) pp.153–161.

(21) Y. Houst, P. Bowen, A. Siebold, Some basic aspects of the interaction between cement and superplasticizers, in: R.K. Dhir, P.C. Hewlett, L.J. Csetenvi (Eds.), Innovations and Developments in Concrete Materials and Construction, vol. 12, (2002) pp. 225–234.

(22) M.M. Alonso, M. Palacios, F. Puertas, A.G. de la Torre, M.A.G. Aranda, Effect of polycarboxylate admixture structure on cement paste rheology, Mater Constr vol. 57 (286) (2007) pp. 65–81.

(23) K. Yamada, S. Ogawa, S. Hanehara, Controlling of the adsorption and dispersing force of polycarboxylate-type superplasticizer by sulfate ion concentration in aqueous phase, Cem Concr Res vol. 31 (2001) pp. 375–383.

(24) M. Palacios, Y.F. Houst, P. Bowen, F. Puertas, Adsorption of superplasticizer admixtures on alkali-activated slag pastes, Cement and Concrete Research vol. 39 (2009) pp. 670–677

(25) S. Chandra, J. Björnström, Influence of cement and superplasticizers type and dosage on the fluidity of cement mortars. Part I, Cem Concr Res vol. 32 (2002) pp.1605–1611.

(26) U. Mäder, I. Schober, F. Wombacher, D. Ludirdja, Polycarboxylate polymers and blends in different cements, Cem, Concr Aggreg vol. 26 (2004) pp.110–114.

(27) Ambroise J, Murat M, Pera J. Investigations on synthetic binders obtained by middletemperature thermal dissication of clay minerals. Silicates Industries, vol. 7, no 8 (1986) pp. 99-107.

(28) Sayanam RA, Kalsotra AK, Mehta SK, Sing RS, Mandal G.; Studies on thermal transformations and pozzolanic activities of clay from Jammu region (India). J Thermal Analysis vol. 35 (1989) pp.9-106

(29) Ch. Bich, J. Ambroise, J. Péra, Influence of degree of dehydroxylation on the pozzolanic activity of metakaolin, Applied Clay Science vol. 44 (2009) pp. 194–200

(30) ASTM Designation C-305-94, Mechanical mixing of hydraulic cements pastes and mortars of plastic consistency, in: Annual Book of ASTM Standards 04.01, Am Soc Test Mat, Easton, MD, (1996), pp. 194–196

(31) Bénoît O. Détermination de l’activité pouzzolanique d’une pouzzolane par voie Chimique. Bull liaison labo. P. et Ch. N° 26, (1967). pp D1-D5.

(32) Raverdy M, Brivot F, Paillère AM, Bron R. Appréciation de l’activité pouzzolanique de constituents secondaires. In: Proceedings of 7e Congrés International de la Chimie des Ciments, Paris, France; (1980). p. 6–41

(33) J. M. Mechling, A. Lecomte et K. Merriaux, Measurement of the absorption of water of the mineral admixtures in concrete by evaporometry. Materials and structures/Matériaux de Construction, Vol. 36 (2003) pp. 32-39.

(34) EFNARC, Specification and guidelines for self compacting concrete. Feb. (2002), pp 29– 35. Free pdf copy downloadable from

(35) Bauer E, Sousa JGG, Guimaraes EA, Silva FGS: Study of the laboratory Vane test on mortars, Building and Environment 42 (2007), pp 86-92.

(36) Struble, L. and Sun, G.K., Viscosity of Portland cement Paste ace has Function off Concentration. Advanced Cement Based Materials, vol. 2 (2) (1995) pp. 62-69.

(37) Ferraris, c.f., 1, Measurement off the rheological properties of performance high concrete; State of the art carryforward. Newspaper of Research, the National Institute of Standards and Technology, vol. 104 (5) (999) pp. 461-478

(38) J.M. Khatib, J.J. Hibbert., Selected engineering properties of concrete incorporating slag and metakaolin, Construction and Building Materials 19 (2005) 460–472

(39) P. C. Aïtcin, High-Performance Concrete. E & FN Spon (Routledge), London/New York, (1998)

(40) S. Jiang, B.G. Kim, P.C. Aïtcin Importance of adequate soluble alkali content to ensure cement/superplasticizer compatibility, Cement and Concrete Research vol. 29 (1999) pp. 71–78

(41) G. Lim, SS. Hong, D.S. Kim, B.J. Lee, J.-S Rho. Slump loss control of cement paste by adding polycarboxylic type slump-releasing dispersant, Cement and Concrete Research vol. 29 (2), (1999) pp. 223–229

(42) W.F. Perenchio, D.A. Whiting, D.L. Kantro, Proc 1st Int’l Symp Superplasticizers in Concrete ACI sp-b2, (1979), pp. 137–155.

(43) J. Plank, Ch. Hirsch, "Superplasticizer Adsorption on Synthetic Ettringite", In Proceedings of 7th CANMET/ACI Conference on Superplasticizers in Concrete, Berlin, Germany, vol. 217, (2003) pp. 283-298.

(44) Y. Elakneswaran *, T. Nawa, K. Kurumisawa, Zeta potential study of paste blends with slag, Cement & Concrete Composites vol. 31 (2009) pp.72–76

(45) Pointeau I, Reiller P, Mace N, Landesman C, Coreau N. Measurement and modeling of the surface potential evaluation of hydrated cement pastes as a function of degradation. J Colloid Interf Sci 300 (2006) pp. 33–44. PMid:16631770

(46) S. Collepardi, L. Coppola, R. Troli, and M. Collepardi, Mechanisms of Actions of Different Superplasticizers for High-Performance Concrete, SP 186-29, (1999), pp 503- 523.

Copyright (c) 2011 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support