Materiales de Construcción, Vol 61, No 303 (2011)

Physical and mechanical characterization of gypsum boards containing phase change materials for latent heat storage

A. Oliver-Ramírez
Universidad Politécnica de Madrid, Spain

A. García-Santos
Universidad Politécnica de Madrid, Spain

F. J. Neila-González
Universidad Politécnica de Madrid, Spain


This article describes the design and manufacture of a gypsum board which, despite its 45 % wt content of phase change materials, meets the minimum physical and mechanical requirements laid down in the legislation on gypsum plasters (Spanish and European standard UNE EN 13279 and Spanish specifications for gypsum acceptance, RY 85). Under this design, a one-metre square, 1.5-cm thick board contains 4.75 kg of PCM, much more than in any prior drylining (the maximum attained to date is 3 kg per m2). The mechanical and physical characteristics of this new composite were previously improved with two joint-action additives: polypropylene fibres and melamine formaldehyde as a dispersing agent.
In the 20-30 ºC temperature range, a gypsum board 1.5 cm thick containing this percentage of PCMs can store five times more thermal energy than conventional plasterboard of the same thickness, and the same amount of energy as half-foot hollow brick masonry.


gypsum; PCM; thermal energy; storage; latent heat; physical properties; mechanical properties

Full Text:



(1) Abhat, A.: “Low temperature latent heat thermal energy storage-Heat storage materials”, Solar Energy, 30 (4) (1983).

(2) Feldman D., B. D.; Hawes, D. and Ghanbari, E.: “Obtaining an energy storing building material by direct incorporation of an organic phase change material in gypsum wallboard”, Solar Energy Materials (1991), pp. 231-242.

(3) Hauer, A.: “Innovative Thermal Energy Storage Systems for Residential Use”, Bavarian Center for Applied Energy Research, ZAE Bayern (2002), p. 8.

(4) Hawlader, M.; Uddin, M. and Khin, M.: “Microencapsulated PCM thermal-energy storage system”, Applied energy, 74 (1-2) (2003), pp. 195-202.

(5) Heim, D. and Clarke, J. A.: “Numerical modelling and thermal simulation of PCM–gypsum composites with ESP-r”, Energy & Buildings, 36(8) (2004), pp. 795-805.

(6) Rudd, A. F.: “Phase-change material wallboard for distributed thermal storage in buildings”, ASHRAE Transactions, 99 (2) (1993), pp. 339-346.

(7) Oliver, A.: “Incorporación de materiales de cambio de fase en placas de yeso reforzadas con fibras de polipropileno. Aplicación a sistemas de calefacción y refrigeración pasivos para almacenamiento de calor latente en edificios”, Departamento de Construcción y Tecnología Arquitectónicas, Universidad Politécnica de Madrid, Madrid (2009), p. 376.

(8) Salyer, I. O.: “Dry Powder Mixes comprising Phase Change Materials”, USA (1993).

(9) Bader, M.: “Microencapsulated Paraffin in Polyethylene for Thermal Energy Storage”, New Zealand: The University of Auckland, School of Engineering, Department of Chemical & Material Engineering (2002).

(10) Feldman, D.; Banu, D. and Hawes, D. W.: “Development and application of organic phase change mixtures in thermal storage gypsum wallboard”, Solar Energy Materials and Solar Cells, 36 (2) (1995), pp. 147-157.

(11) Shapiro, M., et al.: “Thermal storage in drywall using, organic phase-change material”, Passive Sol. J, 4 (4) (1987).

(12) Kedl, R. J. and Stovall, T. K.: “Activities in support of the wax-impregnated wallboard concept”, U.S. Department of Energy: thermal energy storage researches activity review (1989), New Orleans, Louisiana, USA.

(13) Neeper, D. A.: “Thermal dynamics of wallboard with latent heat storage”, Solar Energy, 68 (5) (2000), pp. 393-403.

(14) Khudhair, A. M. and Farid, M. M.: “A review on energy conservation in building applications with thermal storage by latent heat using phase change materials”, Energy Conversion and Management, 45 (2) (2004), pp. 263-275.

(15) Ahmad, M.; B. A.; Sallee, H. and Quenard, D: “Experimental investigation and computer simulation of thermal behaviour of wallboards containing a phase change material”, Energy and Buildings, 38 (2006), pp. 357-366.

(16) Stovall, T. K. and Tomlinson, J. J.: “What are the potential benefits of including latent storage in common wallboard?”, Conference: 27. Intersociety energy conversion engineering conference, San Diego, CA, United States (3-7 Aug, 1992).

(17) Feustel, H. and Stetiu, C.: “Thermal performance of phase change wallboard for residential cooling application”, Laurence Berkeley National Laboratory, LBL-38320 (1997).

(18) Athientis A. K.; L. C. Hawes, D.; Banu, D. and Feldman, D.: “Investigation of the thermal performance of a passive solar test-room with wall latent heat storage”, Building and Environment (1997), pp. 405-410.

(19) Darkwa, K. and Kim, J.: “Dynamics of energy storage in phase change drywall systems”, International Journal of Energy Research, 29 (4) (2005), pp. 335-343.

(20) Ibáñez, M., et al.: “An approach to the simulation of PCMs in building applications using TRNSYS”. Applied Thermal Engineering, 25 (11-12) (2005), pp. 1796-1807.

(21) (cited 2010 20/02/2010).

(22) García-Santos, A.: “Comportamiento mecánico de yeso reforzado con polímeros sintéticos”. Informes de la Construcción, 40 (397) (1988), p. 67.

(23) García-Santos, A.: “Caracterización de compuestos de escayola reforzados, en relación con el tipo de refuerzo y la relación a/y”, Informes de la Construcción, 56 (2004), pp. 19-31.

Copyright (c) 2011 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support