Materiales de Construcción, Vol 62, No 307 (2012)

Concrete Durability Properties and Microstructural Analysis of Cement Pastes with Nopal Cactus Mucilage as a Natural Additive


https://doi.org/10.3989/mc.2012.00211

S. Ramírez-Arellanes
CIIDIR Unidad Oaxaca, Instituto Politécnico Nacional, Oaxaca, Mexico

P. F. de J. Cano-Barrita
CIIDIR Unidad Oaxaca, Instituto Politécnico Nacional, Oaxaca, Mexico

F. Julián-Caballero
CIIDIR Unidad Oaxaca, Instituto Politécnico Nacional, Oaxaca, Mexico

C. Gómez-Yañez
ESIQIE, Instituto Politécnico Nacional, México D.F., Mexico

Abstract


The present study evaluated the addition of a 3% nopal cactus mucilage solution to cement pastes, in its effects on setting times, flow, hydration, and microstructure, as well as on capillary water absorption and chloride diffusion in concrete. Hydration was characterized through XRD and microstructure was characterized with SEM. The mucilage solution/cement and water/cement ratios tested were 0.30, 0.45, and 0.60. The results in cement pastes indicate that the addition of mucilage increases setting times, reduces flow, slows cement hydration, and inhibits the formation of calcium hydroxide crystals in comparison with the control. Capillary absorption was significantly reduced in concrete containing mucilage, and chloride diffusion coefficients dropped up to 20% in the mixture with a mucilage/cement ratio = 0.30. The mixture with a mucilage/cement ratio = 0.45 displayed marginal reduction, and the mixture with mucilage/cement ratio = 0.60 exhibited a diffusion coefficient that was greater than the control for the specimens without moist curing.

Keywords


Organic admixture; Cement paste; Hydration products; Diffusion; X ray diffraction

Full Text:


PDF

References


(1) Borges, P.; Castillo, R.; Carpio, J.; Pazini, J.; San Juan, M.: Corrosión en estructuras de concreto armado. Teoría, inspección, diagnóstico, vida útil y reparaciones. Instituto Mexicano del Cemento y del Concreto, A.C. (2001).

(2) Hernández-Castañeda, O.; Mendoza-Escobedo, C.: “Durabilidad e infraestructura: retos e impacto socioeconómico”. Ingeniería Investigación y Tecnología, vol. VII, nº 8 (2006), pp. 57-70.

(3) Carino, N.J.; Clifton, J. R.: “High-Performance Concrete: Research Needs to Enhance its Use”, Concrete International, vol. 13, nº 9 (1991), pp. 70-76

(4) Neville, A. M.: Properties of Concrete, Longman Group Limited, 1995.

(5) Cardenas, A.; Arguelles, W. M.; Goycoolea, F. M.: “On the Possible Role of Opuntia ficus-indica Mucilage in Lime Mortar Performance in the Protection of Historical Buildings”, Journal of the Professional, Association for Cactus Development. vol. 3 (1998), pp. 1-8.

(6) Chandra, S.; Eklund, L.; Villarreal R. R.: “Use of Cactus in Mortars and Concrete”. Cement and Concrete Research, vol. 28, nº 1 (1998), pp. 41-51. http://dx.doi.org/10.1016/S0008-8846(97)00254-8

(7) Ruiz-García, S.: Concreto autoconsolidable para climas cálidos utilizando solución de extracto de nopal y polvo de caliza, MSc Thesis, Instituto Tecnológico de Oaxaca, México, 2005.

(8) Peschard, A.; Govin, A.; Grosseau, P.; Guilhot, B.; Guyonnet, R.: “Effect of polysaccharides on the hydration of cement paste at early ages”, Cement and Concrete Research, vol. pp. 2153-2158.

(9) Coordinación General de comunicación social y divulgación, comunicado de prensa, IPN, (2006).

(10) Charley, H.: Tecnología de alimentos, procesos químicos y físicos en la preparación de alimentos, Limusa, México (2000).

(11) ASTM C 305-99 Standard: Standard practice for mechanical mixing of hydraulic cement pastes and mortars of plastic consistency, ASTM International, West Conshohocken, PA, 1999, 3 pp.

(12) ASTM C230/C230M-08 Standard: Standard Specification for Flow Table for Use in Tests of Hydraulic Cement, ASTM International, West Conshohocken, PA, 1999, 6 pp.

(13) ASTM C807 – 08 Standard: Standard Test Method for Time of Setting of Hydraulic Cement Mortar by Modified Vicat Needle, ASTM International, West Conshohocken, PA, 1999, 3 pp.

(14) ACI Committee 211, Standard Practice for Selecting Proportions for Normal, Heavyweight and Mass Concrete, ACI 211.1-91, American Concrete Institute, Farmington Hills, Michigan, 1991.

(15) Aitcin, P.C.; Metha, P. K.: “Principles Underlying Production of High-Performance Concrete”. The American Society for Testing and Materials. Cement, Concrete and Aggregates, vol. 12, nº 2, (1990), pp. 70-78.

(16) ASTM C39/C39M-04 Standard: Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA, 1999, 6 pp.

(17) ASTM C642 - 06 Standard: Standard Test Method for Density, Absorption, and Voids in Hardened Concrete, ASTM International, West Conshohocken, PA, 1999, 3 pp.

(18) NT BUILD 443, Approved 1995-accelerated chloride penetration”, NORDTEST, Tekniikantie 12, FIN-Finlandia.

(19) Knapen, E.; Gemert, D.V.: “Cement hydration and microstructure formation in the presence of water-soluble polymers”, Cement and Concrete Research, vol. 39, nº 1 (2009), pp. 6-13. http://dx.doi.org/10.1016/j.cemconres.2008.10.003

(20) Roncero, J.; Valls, S.; Gettu, R.; hydration of cement paste using nuclear magnetic techniques”. Cement and Concrete Research, vol. 32, nº 1, (2002), pp. 103-108. http://dx.doi.org/10.1016/S0008-8846(01)00636-6

(21) Tagnit-Hamou A.; Saric-Coric M.; Rivard P.: “Internal deterioration of concrete by the oxidation of pyrrhotitic aggregates”. Cement and Concrete Research, vol. 35, nº 1 (2005), pp. 99-107. http://dx.doi.org/10.1016/j.cemconres.2004.06.030

(22) Saenz, C.; Sepúlveda, E.; Matsuhiro, B.: “component with industrial perspectives”, nº. 3, (2004), pp. 275-290.

(23) Torres-Acosta, A. A.; Cano-Barrita, P. F. Tecnología, nº. 233, (2007), pp. 44-49.

(24) Martín-Pérez, B.; Zibara, H.; Hooton R.D.; Thomas, M.D.A.:: “A study of the effect of chloride binding on service life predictions”. Cement and Concrete Research, vol. 30, nº 8, (2000), pp. 1215-1223. http://dx.doi.org/10.1016/S0008-8846(00)00339-2

(25) Bentz, D.P.; Peltz, M.A.; Snyder K.A.; Davis J.M.: “VERDiCT: Viscosity Enhancers Reducing Diffusion in Concrete Technology”, Concrete International, vol. 31, nº 1, (2009). pp. 31-36.

(26) Shimizu, T.; Kenndler, E.: “Capillary electrophoresis of small solutes in linear polymer solutions: Relation between ionic mobility, diffusion coefficient and viscosity”, Electrophoresis, vol. 20, nº 17, (1999), pp. 3364–3372. http://dx.doi.org/10.1002/(SICI)1522-2683(19991101)20:17<3364::AID-ELPS3364>3.0.CO;2-X

(27) Cussler, E.: Diffusion mass transfer in fluid systems, Second edition, Cambridge University Press, 1997.

(28) Pivonka, P.; Hellmich, C.; Smith, D.: “Microscopic effects on chloride diffusivity of cement pastes a scale-transition analysis”, Cement and Concrete Research, vol. 34, nº 12, (2004), pp. 2251-2260. http://dx.doi.org/10.1016/j.cemconres.2004.04.010




Copyright (c) 2012 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es