Caracterización de los morteros de relleno usados en diferentes túneles españoles
DOI:
https://doi.org/10.3989/mc.2012.03611Palabras clave:
mortero, tensión umbral, viscosidad, tuneladora, túnelResumen
El objetivo principal del presente estudio es llevar a cabo la comparación de las dosificaciones de mortero de relleno empleadas en algunos de los grandes túneles españoles para rellenar el hueco anular dejado entre el terreno y el extradós de las dovelas. Inicialmente se hace una nueva propuesta experimental usando la composición y los materiales correspondientes a 6 dosificaciones usadas en 4 túneles. Los resultados obtenidos indican diferencias significativas en cuanto a la densidad, a la consistencia y a las propiedades reológicas. De acuerdo con las estimaciones realizadas, ello se traduce en diferencias de hasta un 67% en la potencia requerida del sistema de bombas de la tuneladora para inyectar el material. Por otro lado, se refleja una correlación entre el contenido de finos de la mezcla y las propiedades reológicas. Esa correlación puede servir para controlar y modificar dichas propiedades de manera fácil y rápida a pie de obra.
Descargas
Citas
(1) Széchy, K.: The art of tunnelling, p. 891, Budapest: Akadémiai Kiadó, (1970).
(2) Varios Autores: Ingeo de túneles, Serie: Ingeniería de Túneles, Libro 1, Madrid, España : Entorno Grafico, ISBN 84-921708-5-9, (1999).
(3) EFNARC: Specification and guidelines for the use of specialist products for soft ground tunnelling, European Federation of Producers and Contractors of Specialist Products for Structures, (2005).
(4) Cavalaro, S. H. P.: Evaluación de aspectos tecnológicos en túneles construidos con tuneladora y dovelas prefabricadas de hormigón, Tesis Doctoral, p. 320, E.T.S. Ingenieros de Caminos, Canales y Puertos. U.P.C. Barcelona, Spain, (2009).
(5) Blom, C. B. M.: Design philosophy of concrete linings for tunnels in soft soils, p. 184, Delft, The Netherlands : Delft University Press, (2002).
(6) Ding, W. Q.; Yue, Z. Q.; Tham, L. G.; Zhu, H. H.; Lee, C. F.; Hashimoto, T.: “Analysis of shield tunnel”, John Wiley and Sons Ltd. International Journal for Numerical and Analytical Methods in Geomechanics. (2004), vol. 28, nº1, pp. 59.
(7) Bezuijen, A.; Talmon, A.: “Grout properties and their influence on backfill grouting”, Proceedings of the 5th International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, p. 187, Amsterdam, (2005).
(8) Bertomeu, J.: Libro de ruta para un ingeniero de turno de una tuneladora EPB, TFC presentado a la ETSICCPB, Barcelona, (2010).
(9) López, M. R.: Desarrollo de un dispositivo para la determinación de la aptitud del hormigón para el bombeo, TFC presentado a la ETSICCPB, (2011).
(10) Bezuijen, A.; Talmon, A. M.: “Grout, the foundation of a bored tunnel”, Thomas Telford Services Ltd, BGA International Conference on Foundations, Innovations, Observations, Design and Practice, p. 129, Dundee, United Kingdom, (2003).
(11) Talmon, A. M.; Aanen, L.; van der Zon, W. H.: “Stromingsgedrag groutinjectie Delft Cluster”, Delft Cluster, External research report. (2002).
(12) Talmon, A. M.; Bezuijen, A.: “Grouting the tail void of bored tunnels: the role of hardening and consolidation of grouts”, 5th International Symposium Geotechnical Aspects of Underground Construction in Soft Ground, Amsterdam, The Netherlands, 15-17 de junio de 2005. ISSMGE-TC28, (2005).
(13) Wallevik, J. E.: Rheology of particle suspensions, Doctoral Thesis, Trondheim, Norway : The Norwegian University of Science and Technology (NTNU), (2003).
(14) Blom, C. B. M.; Lokhorst, S.J.; A., Slenders B. M.; A., Kwast E.: Influences of physical grout flow around bored tunnels, Geotechnical Aspects of Underground Construction in Soft Ground, p. 253, London, England : Taylor & Francis Group, (2006).
(15) Bezuijen, A.; Talmon, A.M.: “Grout pressure measurements during tunnelling”, ITA Conference. Amsterdam : s.n., (2003).
(16) Bezuijen, A.; Talmon, A.M.: “Grout pressures around a tunnel lining. Influence of grout consolidation and loading on lining”, Tunnelling and Underground Space Technology, vol. 19, 4-5 (2004), pp. 443.
(17) Bezuijen, A.; Talmon, A. M.; Kaalberg, F. J.; Plugge, R.: “Field measurements of grout pressures during tunnelling of the Sophia Rail Tunnel”, Soils and Foundations, vol. 44, nº 1 (2004), pp. 39. http://dx.doi.org/10.3208/sandf.44.39
(18) Cavalaro, S. H. P.; Blom, C. B. M.; Walraven, J. C.; Aguado, A.: “Structural analysis of contact deficiencies in segmented lining”, Tunnelling and Underground Space Technology, (2011). http://dx.doi.org/10.1016/j.tust.2011.05.004
(19) Debrauwer, R.: “Groutbelasting op een tunnellining”, Eindrapport, Delft:TU Delft, (2002).
(20) Wallevik, J. E: Rheology of Particle Suspensions - Fresh Concrete, Mortar and Cement Paste with Various Types of Lignosulfonates, Ph.D. thesis, Department of Structural Engineering, The Norwegian University of Science and Technology, ISBN 82-471-5566-4, ISSN 0809-103X, pp. 401, (2003).
(21) Schowalter, W. R.; Christensen, G.: “Toward a rationalization of the slump test for fresh concrete: comparisons of calculations and experiments”, Journal of Rheology, vol. 42, nº 4 (1998), pp. 865. http://dx.doi.org/10.1122/1.550905
(22) Shi, Y-X.; Matsui, I.; Guo, Y-J.: “A study on the effect of fine mineral powders with distinct vitreous contents on the fluidity and rheological properties of concrete”, Cement and Concrete Research, vol. 34, nº 8 (2004), pp. 1381. http://dx.doi.org/10.1016/j.cemconres.2003.12.031
(23) Ferraris, C. F.; De Larrard, F.: “Modified Slump Test to Measure Rheological Parameters of Fresh Concrete”, Cement, Concrete and Aggregates, vol. 20, nº 2 (1998), pp. 241. http://dx.doi.org/10.1520/CCA10417J
(24) Logos, C.; Nguyen, Q. D.: “Effect of particle size on the flow properties of a South Australian coal-water slurry”, Powder Technology, vol. 88, nº 1 (1996), pp. 55. http://dx.doi.org/10.1016/0032-5910(96)03103-8
(25) Ota, M.; Miyamoto, T.: “Optimum particle size distribution of an electrorheological fluid”, Journal of Applied Physics, vol. 76, nº 9 (1994), pp. 5528. http://dx.doi.org/10.1063/1.357154
(26) White, F. M.: “Avoidance of blockages in concrete pumping process”, ACI Materials Journal, vol. 102, 3 (2005), 183 p.
(27) Río, O.; Rodríguez, A.; Nabulsi, S.; Alvarez, M.: “Pumping Quality Control Method Based on Online Concrete Pumpability Assessment”, ACI Materials Journal, vol. 108, 4 (2011), pp. 423.
(28) Kaplan, D.; De Larrard, F.; Sedran, T.: Fluid Mechanics, Mcgraw-Hill Series in Mechanical Engineering, Edición 7 (2010), pp. 896.
(29) Kaplan, D.; de Larrard, F.; Sedran, T.: “Design of concrete pumping circuit”, ACI Materials Journal, vol. 102, nº 2 (2005), pp. 110.
(30) Geankoplis, C. J.: “Principles of momentum transfer and applications”, Transport process and unit operations. (1995). pp. 114.
(31) Belem, T.; Benzaazoua, M.: “An overview of the use of paste backfill technology as a ground support method in cut-and-fill mines”, In: 5th International Symposium on ground support in mining and underground construction, Perth, Western Australia, Australia : s.n., 28-30 de September de 2004 (2004). pp. 637.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2013 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.