Self-healing concrete-What Is it Good For?
DOI:
https://doi.org/10.3989/mc.2021.07320Keywords:
Concrete, Durability, Microcracking, Transport properties, Mechanical propertiesAbstract
Self-healing of concrete is the process in which the material regenerates itself repairing inner cracks. This process can be produced by autogenous or autonomous healing. Autogenous healing is a natural process, produced by carbonation and/or continuing hydration. Autonomous healing is based on the use of specific agents to produce self-healing, which can be added directly to the concrete matrix, embedded in capsules or introduced through vascular networks. Some examples are superabsorbent polymers, crystalline admixtures, microencapsulated sodium silicate, and bacteria. This review is structured into two parts. The first part is an overview of self-healing concrete that summarises the basic concepts and the main advances produced in the last years. The second part is a critical discussion on the feasibility of self-healing concrete, its possibilities, current weaknesses, and challenges that need to be addressed in the coming years.
Downloads
References
Damgaard Jensen, A.; Chatterji, S. (1996) State of the art report on micro-cracking and lifetime of concrete - Part 1. Mater. Struct. 29 [1], 3-8. https://doi.org/10.1007/BF02486001
Speck, T.; Bauer, G.; Flues, F.; Oelker, K.; Rampf, M.; Schüssele, A.C.; et al. (2013) Chapter 16. Bio-inspired self-healing materials. In: Peter, Fratzl.; John, W.C. Dunlop; Weinkamer, R.; (Eds). Materials Design Inspired by Nature: Function Through Inner Architecture. The Royal Society of Chemistry. 359-389. https://doi.org/10.1039/9781849737555-00359
Speck, O.; Speck, T. (2019) An overview of bioinspired and biometric self-repairing materials. Biomimetics. 4 [1], 26. https://doi.org/10.3390/biomimetics4010026 PMid:31105211 PMCid:PMC6477613
Van Tittelboom, K.; De Belie, N. (2013) Self-healing in cementitious materials-A review. Mater. 6 [6], 2182-2217. . https://doi.org/10.3390/ma6062182 PMid:28809268 PMCid:PMC5458958
Hearn, N. (1998) Self-sealing, autogenous healing and continued hydration: What is the difference? Mater. Struct. 31 [8], 563-567. https://doi.org/10.1007/BF02481539
Souradeep, G.; Kua, H.W. (2016) Encapsulation technology and techniques in self-healing concrete. J. Mater. Civ. Eng. 28 [12], 1-15. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001687
Ferrara, L.; Van Mullem, T.; Alonso, M.C.; Antonaci, P.; Borg, R.P.; Cuenca, E.; et al. (2018) Experimental characterization of the self-healing capacity of cement based materials and its effects on the material performance: A state of the art report by COST Action SARCOS WG2. Constr. Build. Mater. 167, 115-142. https://doi.org/10.1016/j.conbuildmat.2018.01.143
Sánchez, M.; Faria, P.; Ferrara, L.; Horszczaruk, E.; Jonkers, H.M.; Kwiecień, A.; et al. (2018) External treatments for the preventive repair of existing constructions: A review. Constr. Build. Mater. 193, 435-452. https://doi.org/10.1016/j.conbuildmat.2018.10.173
De Belie, N.; Gruyaert, E.; Al-Tabbaa, A.; Antonaci, P.; Baera, C.; Bajare, D.; et al. (2018) A review of self-healing concrete for damage management of structures. Adv. Mater. Inter. 5 [17], 1800074. https://doi.org/10.1002/admi.201800074
Vijay, K.; Murmu, M.; Deo, S.V. (2017) Bacteria based self healing concrete - A review. Constr. Build. Mater. 152, 1008-1014. https://doi.org/10.1016/j.conbuildmat.2017.07.040
Edvardsen, C. (1999) Water permeability and autogenous healing of cracks in concrete. ACI Mater J. 96 [4], 448-454. https://doi.org/10.14359/645
Snoeck, D.; Van den Heede, P.; Van Mullem, T.; De Belie, N. (2018) Water penetration through cracks in self-healing cementitious materials with superabsorbent polymers studied by neutron radiography. Cem. Concr. Res. 113, 86-98. https://doi.org/10.1016/j.cemconres.2018.07.002
Sun, B.; Wu, H.; Song, W.; Li, Z.; Yu, J. (2019) Design methodology and mechanical properties of Superabsorbent Polymer (SAP) cement-based materials. Constr. Build. Mater. 204, 440-449. https://doi.org/10.1016/j.conbuildmat.2019.01.206
He, Z.; Shen, A.; Guo, Y.; Lyu, Z.; Li, D.; Qin, X.; et al. (2019) Cement-based materials modified with superabsorbent polymers: A review. Constr. Build. Mater. 225, 569-590. https://doi.org/10.1016/j.conbuildmat.2019.07.139
Mignon, A.; De Belie, N.; Dubruel, P.; Van Vlierberghe, S. (2019) Superabsorbent polymers: A review on the characteristics and applications of synthetic, polysaccharide-based, semi-synthetic and 'smart' derivatives. Eur. Polym. J. 117, 165-178. https://doi.org/10.1016/j.eurpolymj.2019.04.054
Ferrara, L.; Krelani, V.; Carsana, M. (2014) A "fracture testing" based approach to assess crack healing of concrete with and without crystalline admixtures. Constr. Build. Mater. 68, 535-551. https://doi.org/10.1016/j.conbuildmat.2014.07.008
Roig-Flores, M.; Pirritano, F.; Serna, P.; Ferrara, L. (2016) Effect of crystalline admixtures on the self-healing capability of early-age concrete studied by means of permeability and crack closing tests. Constr. Build. Mater. 114, 447-457. https://doi.org/10.1016/j.conbuildmat.2016.03.196
Cuenca, E.; Tejedor, A.; Ferrara, L. (2018) A methodology to assess crack-sealing effectiveness of crystalline admixtures under repeated cracking-healing cycles. Constr. Build. Mater. 179, 619-632. https://doi.org/10.1016/j.conbuildmat.2018.05.261
Kanellopoulos, A.; Giannaros, P.; Palmer, D.; Kerr, A.; Al-Tabbaa, A. (2017) Polymeric microcapsules with switchable mechanical properties for self-healing concrete: synthesis, characterisation and proof of concept. Smart. Mater. Struct. 26, 045025. https://doi.org/10.1088/1361-665X/aa516c
Beglarigale, A.; Seki, Y.; Demir, N.Y.; Yazıcı, H. (2018) Sodium silicate/polyurethane microcapsules used for self-healing in cementitious materials: Monomer optimization, characterization, and fracture behavior. Constr. Build. Mater. 162, 57-64. https://doi.org/10.1016/j.conbuildmat.2017.11.164
Al-Tabbaa, A.; Litina, C.; Giannaros, P.; Kanellopoulos, A.; Souza, L. (2019) First UK field application and performance of microcapsule-based self-healing concrete. Constr. Build. Mater. 208, 669-685. https://doi.org/10.1016/j.conbuildmat.2019.02.178
Dry, C.M. (2000) Three designs for the internal release of sealants, adhesives, and waterproofing chemicals into concrete to reduce permeability. Cem. Concr. Res. 30 [12], 1969-1977. https://doi.org/10.1016/S0008-8846(00)00415-4
Van Tittelboom, K.; Adesanya, K.; Dubruel, P.; Van Puyvelde, P.; De Belie, N. (2011) Methyl methacrylate as a healing agent for self-healing cementitious materials. Smart Mater. Struct. 20, 125016. https://doi.org/10.1088/0964-1726/20/12/125016
Gilabert, F.A.; Van Tittelboom, K.; Van Stappen, J.; Cnudde, V.; De Belie, N.; Van Paepegem, W. (2017) Integral procedure to assess crack filling and mechanical contribution of polymer-based healing agent in encapsulation-based self-healing concrete. Cem. Concr. Compos. 77, 68-80. https://doi.org/10.1016/j.cemconcomp.2016.12.001
Wiktor, V.; Jonkers, H.M. (2011) Quantification of crack-healing in novel bacteria-based self-healing concrete. Cem. Concr. Compos. 33 [7], 763-770. https://doi.org/10.1016/j.cemconcomp.2011.03.012
Palin, D.; Wiktor, V.; Jonkers, H.M. (2016) A bacteria-based bead for possible self-healing marine concrete applications. Smart. Mater. Struct. 25, 084008. https://doi.org/10.1088/0964-1726/25/8/084008
Pawar, S.S.; Parekar, P.S.R. (2018) Bacteria based Self-Healing Concrete : Review. Inter. Res. J. Engi. Tech. 5 [3], 1001-1004.
Li, L.; Zheng, Q.; Li, Z.; Ashour, A.; Han, B. (2019) Bacterial technology-enabled cementitious composites: A review. Compos. Struct. 225, 111170. https://doi.org/10.1016/j.compstruct.2019.111170
De Rooij, M.R.; Schlangen, E.; Joseph, C. (2013) Introduction. In: de Rooij M., Van Tittelboom K., De Belie N., Schlangen E. (eds) Self-healing phenomena in cement-based materials. RILEM State-of-the-Art Reports, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6624-2 PMid:23792548
Snoeck, D.; De Belie, N. (2012) Mechanical and self-healing properties of cementitious composites reinforced with flax and cottonised flax, and compared with polyvinyl alcohol fibres. Biosyst. Eng. 111 [4], 325-335. https://doi.org/10.1016/j.biosystemseng.2011.12.005
Snoeck, D.; De Belie, N. (2016) Repeated autogenous healing in strain-hardening cementitious composites by using superabsorbent polymers. J. Mater. Civ. Eng. 28 [1], 1-11. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001360
Roig-Flores, M.; Serna, P. (2020) Concrete early-age crack closing by autogenous healing. Sustain. 12 [11], 4476. https://doi.org/10.3390/su12114476
Sisomphon, K.; Copuroglu, O.; Koenders, E.A.B. (2012) Self-healing of surface cracks in mortars with expansive additive and crystalline additive. Cem. Concr. Compos. 34 [4], 566-574. https://doi.org/10.1016/j.cemconcomp.2012.01.005
Wang, X.F.; Yang, Z.H.; Fang, C.; Han, N.X.; Zhu, G.M.; Tang, J.N.; et al. (2019) Evaluation of the mechanical performance recovery of self-healing cementitious materials - its methods and future development: A review. Constr. Build Mater. 212, 400-421. https://doi.org/10.1016/j.conbuildmat.2019.03.117
Sangadji, S. (2017) Can self-healing mechanism helps concrete structures sustainable? Procedia Eng. 171, 238-249. https://doi.org/10.1016/j.proeng.2017.01.331. https://doi.org/10.1016/j.proeng.2017.01.331
Suleiman, A.R.; Nehdi, M.L. (2018) Effect of environmental exposure on autogenous self-healing of cracked cement-based materials. Cem. Concr. Res. 111, 197-208. https://doi.org/10.1016/j.cemconres.2018.05.009
Yıldırım, G.; Khiavi, A.H.; Yeşilmen, S.; Şahmaran M. (2018) Self-healing performance of aged cementitious composites. Cem. Concr. Compos. 87, 172-186. https://doi.org/10.1016/j.cemconcomp.2018.01.004
Desmettre, C.; Charron, J.P. (2012) Water permeability of reinforced concrete with and without fiber subjected to static and constant tensile loading. Cem Concr Res. 42 [7], 945-952. https://doi.org/10.1016/j.cemconres.2012.03.014
Nishiwaki, T.; Kwon, S.; Homma, D.; Yamada, M.; Mihashi, H. (2014) Self-healing capability of fiber-reinforced cementitious composites for recovery of watertightness and mechanical properties. Mater. 7 [3], 2141-2154. https://doi.org/10.3390/ma7032141 PMid:28788560 PMCid:PMC5453282
Plagué, T.; Desmettre, C.; Charron, J.P. (2017) Influence of fiber type and fiber orientation on cracking and permeability of reinforced concrete under tensile loading. Cem. Concr. Res. 94, 59-70. https://doi.org/10.1016/j.cemconres.2017.01.004
Schlangen, E.; ter Heide, N.; van Breugel, K. (2007) Crack healing of early age cracks in concrete. In: Konsta-Gdoutos M.S. (eds) Measuring, monitoring and modeling concrete properties. Springer, Dordrecht. 273-284 https://doi.org/10.1007/978-1-4020-5104-3_32
Jefferson, A.; Joseph, C.; Lark, R.; Isaacs, B.; Dunn, S.; Weager, B. (2010) A new system for crack closure of cementitious materials using shrinkable polymers. Cem. Concr. Res. 40 [5], 795-801. https://doi.org/10.1016/j.cemconres.2010.01.004
Jaroenratanapirom, D.; Sahamitmongkol, R. (2011) Self-crack closing ability of mortar with different additives. J. Met. Mater. Miner. 21 [1], 9-17.
Hearn, N.; Morley, C.T. (1997) Self-sealing property of concrete - Experimental evidence. Mater. Struct. 30, 404-411. https://doi.org/10.1007/BF02498563
Huang, H.; Ye, G.; Damidot, D. (2013) Characterization and quantification of self-healing behaviors of microcracks due to further hydration in cement paste. Cem. Concr. Res. 52, 71-81. https://doi.org/10.1016/j.cemconres.2013.05.003
Van Tittelboom, K.; Gruyaert, E.; Rahier, H.; De Belie, N. (2012) Influence of mix composition on the extent of autogenous crack healing by continued hydration or calcium carbonate formation. Constr. Build. Mater. 37, 349-359. https://doi.org/10.1016/j.conbuildmat.2012.07.026
Darquennes, A.; Olivier, K.; Benboudjema, F.; Gagné, R. (2016) Self-healing at early-age, a way to improve the chloride resistance of blast-furnace slag cementitious materials. Constr. Build Mater. 113, 1017-1028. https://doi.org/10.1016/j.conbuildmat.2016.03.087
Zhou, Z.H; Li, Z.Q.; Xu, D.J.; Yu, J.H. (2011) Influence of slag and fly ash on the self-healing ability of concrete. Advan. Mater. Research. 306-307, 1020-1023. https://doi.org/10.4028/www.scientific.net/AMR.306-307.1020
Na, S.H.; Hama, Y.; Taniguchi, M.; Katsura, O.; Sagawa, T.; Zakaria, M. (2012) Experimental investigation on reaction rate and self-healing ability in fly ash blended cement mixtures. J. Adv. Concr. Technol. 10 [7], 240-253. https://doi.org/10.3151/jact.10.240
Han, N.X.; Xing, F. (2017) A comprehensive review of the study and development of microcapsule based self-resilience systems for concrete structures at Shenzhen University. Mater. 10 [1], 2. https://doi.org/10.3390/ma10010002 PMid:28772362 PMCid:PMC5344554
Sidiq, A.; Setunge, S.; Gravina, R.J.; Giustozzi, F. (2020) Self-repairing cement mortars with microcapsules: A microstructural evaluation approach. Constr. Build. Mater. 232, 117239. https://doi.org/10.1016/j.conbuildmat.2019.117239
Toledo Filho, R.D.; Ghavami, K.; Sanjuán, M.A.; England G.L. (2005) Free, restrained and drying shrinkage of cement mortar composites reinforced with vegetable fibres. Cem. Concr. Compos. 27 [5], 537-546. https://doi.org/10.1016/j.cemconcomp.2004.09.005
Singh, H.; Gupta, R. (2020) Influence of cellulose fiber addition on self-healing and water permeability of concrete. Case Stud. Constr. Mater. 12, e00324. https://doi.org/10.1016/j.cscm.2019.e00324
Qian, S.Z.; Zhou, J.; Schlangen, E. (2010) Influence of curing condition and precracking time on the self-healing behavior of Engineered Cementitious Composites. Cem. Concr. Compos. 32 [9], 686-693. https://doi.org/10.1016/j.cemconcomp.2010.07.015
Lee, H.X.D.; Wong, H.S.; Buenfeld, N.R. (2010) Potential of superabsorbent polymer for self-sealing cracks in concrete. Adv. Appl. Ceram. 109 [5], 296-302. https://doi.org/10.1179/174367609X459559
Tsuji, M.; Shitama, K.; Isobe, D. (1999) Basic studies on simplified curing technique, and prevention of initial cracking and leakage of water through cracks of concrete by applying superabsorbent polymers as new concrete admixture. Jour. Soci. Mater. Sci., Japan. 48 [11], 1308-1315. https://doi.org/10.2472/jsms.48.1308
Kang, S-H.; Hong, S-G.; Moon, J. (2018) Importance of monovalent ions on water retention capacity of superabsorbent polymer in cement based solutions. Cem. Concr. Compos. 88, 64-72. https://doi.org/10.1016/j.cemconcomp.2018.01.015
Snoeck, D.; Schaubroeck, D.; Dubruel, P.; De Belie, N. (2014) Effect of high amounts of superabsorbent polymers and additional water on the workability, microstructure and strength of mortars with a water-to-cement ratio of 0.50. Constr. Build. Mater. 72, 148-157. https://doi.org/10.1016/j.conbuildmat.2014.09.012
Hong, G.; Choi, S. (2017) Rapid self-sealing of cracks in cementitious materials incorporating superabsorbent polymers. Constr. Build. Mater. 143, 366-375. https://doi.org/10.1016/j.conbuildmat.2017.03.133
Park, B.; Choi, Y.C. (2018) Self-healing capability of cementitious materials with crystalline admixtures and super absorbent polymers (SAPs). Constr. Build. Mater. 189, 1054-1066. https://doi.org/10.1016/j.conbuildmat.2018.09.061
Snoeck, D.; Van Tittelboom, K.; Steuperaert, S.; Dubruel, P.; De Belie, N. (2014) Self-healing cementitious materials by the combination of microfibres and superabsorbent polymers. J. Intell. Mater. Syst. Struct. 25 [1], 13-24. https://doi.org/10.1177/1045389X12438623
Roig-Flores, M.; Moscato, S.; Serna, P.; Ferrara, L. (2015) Self-healing capability of concrete with crystalline admixtures in different environments. Constr. Build. Mater. 86, 1-11. https://doi.org/10.1016/j.conbuildmat.2015.03.091
Escoffres, P.; Desmettre, C.; Charron, J.P. (2018) Effect of a crystalline admixture on the self-healing capability of high-performance fiber reinforced concretes in service conditions. Constr. Build. Mater. 173, 763-774. https://doi.org/10.1016/j.conbuildmat.2018.04.003
Sisomphon, K.; Copuroglu, O.; Koenders, E.A.B. (2013) Effect of exposure conditions on self healing behavior of strain hardening cementitious composites incorporating various cementitious materials. Constr. Build. Mater. 42, 217-224. https://doi.org/10.1016/j.conbuildmat.2013.01.012
Chindasiriphan, P.; Yokota, H.; Pimpakan, P. (2020) Effect of fly ash and superabsorbent polymer on concrete self-healing ability. Constr. Build. Mater. 233, 116975. https://doi.org/10.1016/j.conbuildmat.2019.116975
Qureshi, T.S.; Al-Tabbaa, A. (2016) Self-healing of drying shrinkage cracks in cement-based materials incorporating reactive MgO. Smart Mater. Struct. 25 [8], 1-16. https://doi.org/10.1088/0964-1726/25/8/084004
Qureshi, T.; Kanellopoulos, A.; Al-Tabbaa, A. (2018) Autogenous self-healing of cement with expansive minerals-I: Impact in early age crack healing. Constr. Build. Mater. 192, 768-784. https://doi.org/10.1016/j.conbuildmat.2018.10.143
Qureshi, T.; Kanellopoulos, A.; Al-Tabbaa, A. (2019) Autogenous self-healing of cement with expansive minerals-II: Impact of age and the role of optimised expansive minerals in healing performance. Constr. Build. Mater. 194, 266-275. https://doi.org/10.1016/j.conbuildmat.2018.11.027
Alghamri, R.; Kanellopoulos, A.; Al-Tabbaa, A. (2016) Impregnation and encapsulation of lightweight aggregates for self-healing concrete. Constr. Build. Mater. 124, 910-921. https://doi.org/10.1016/j.conbuildmat.2016.07.143
Qureshi, T.S.; Kanellopoulos, A.; Al-Tabbaa, A. (2016) Encapsulation of expansive powder minerals within a concentric glass capsule system for self-healing concrete. Constr. Build. Mater. 121, 629-643. https://doi.org/10.1016/j.conbuildmat.2016.06.030
Tan, N.P.B.; Keung, L.H.; Choi, W.H.; Lam, W.C.; Leung, H.N. (2015) Silica-based self-healing microcapsules for self-repair in concrete. J. Appl. Polym. Sci. 133 [12], 43090. https://doi.org/10.1002/app.43090
Li, G.; Huang, X.; Lin, J.; Jiang, X.; Zhang, X. (2019) Activated chemicals of cementitious capillary crystalline waterproofing materials and their self-healing behaviour. Constr. Build. Mater. 200, 36-45. https://doi.org/10.1016/j.conbuildmat.2018.12.093
Irico, S.; Bovio, A.G.; Paul, G.; Boccaleri, E.; Gastaldi, D.; Marchese, L.; et al. (2017) A solid-state NMR and X-ray powder diffraction investigation of the binding mechanism for self-healing cementitious materials design: The assessment of the reactivity of sodium silicate based systems. Cem. Concr. Compos. 76, 57-63. https://doi.org/10.1016/j.cemconcomp.2016.11.006
Restuccia, L.; Reggio, A.; Ferro, G.A.; Tulliani, J.M. (2017) New self-healing techniques for cement-based materials. Procedia Struct. Integr. 3, 253-260. https://doi.org/10.1016/j.prostr.2017.04.016
Sidiq, A.; Gravina, R.J.; Setunge, S.; Giustozzi, F. (2019) Microstructural analysis of healing efficiency in highly durable concrete. Constr. Build. Mater. 215, 969-983. https://doi.org/10.1016/j.conbuildmat.2019.04.233
Mao, W.; Litina, C.; Al-Tabbaa, A. (2020) Development and application of novel sodium silicate microcapsule-based self-healing oil well cement. Mater. 13 [2], 456. https://doi.org/10.3390/ma13020456 PMid:31963604 PMCid:PMC7014011
Lv, L.; Guo, P.; Liu, G.; Han, N.; Xing, F. (2020) Light induced self-healing in concrete using novel cementitious capsules containing UV curable adhesive. Cem. Concr. Compos. 105, 103445. https://doi.org/10.1016/j.cemconcomp.2019.103445
Selvarajoo, T.; Davies, R.E.; Freeman, B.L.; Jefferson, A.D. (2020) Mechanical response of a vascular self-healing cementitious material system under varying loading conditions. Constr. Build. Mater. 254, 119245. https://doi.org/10.1016/j.conbuildmat.2020.119245
Du, W.; Yu, J.; Gu, Y.; Li, Y.; Han, X.; Liu, Q. (2019) Preparation and application of microcapsules containing toluene-di-isocyanate for self-healing of concrete. Constr. Build. Mater. 202, 762-769. https://doi.org/10.1016/j.conbuildmat.2019.01.007
Hu, Z.X.; Hu, X.M.; Cheng, W.M.; Zhao, Y.Y.; Wu, M.Y. (2018) Performance optimization of one-component polyurethane healing agent for self-healing concrete. Constr. Build. Mater. 179, 151-159. https://doi.org/10.1016/j.conbuildmat.2018.05.199
Anglani, G.; Tulliani, J-M.; Antonaci, P. (2020) Behaviour of pre-cracked self-healing cementitious materials under static and cyclic loading. Mater. 13 [5], 1149. https://doi.org/10.3390/ma13051149 PMid:32150887 PMCid:PMC7084963
Perez, G.; Erkizia, E.; Gaitero, J.J.; Kaltzakorta, I.; Jiménez, I.; Guerrero, A. (2015) Synthesis and characterization of epoxy encapsulating silica microcapsules and amine functionalized silica nanoparticles for development of an innovative self-healing concrete. Mater. Chem. Phys. 165, 39-48. https://doi.org/10.1016/j.matchemphys.2015.08.047
Van Tittelboom, K.; De Belie, N.; Van Loo, D.; Jacobs, P. (2011) Self-healing efficiency of cementitious materials containing tubular capsules filled with healing agent. Cem. Concr. Compos. 33 [4], 497-505. https://doi.org/10.1016/j.cemconcomp.2011.01.004
Nain, N.; Surabhi, R.; Yathish, N.V.; Krishnamurthy, V.; Deepa, T.; Tharannum, S. (2019) Enhancement in strength parameters of concrete by application of Bacillus bacteria. Constr. Build. Mater. 202, 904-908. https://doi.org/10.1016/j.conbuildmat.2019.01.059
Huynh, N.N.T.; Phuong, N.M.; Toan, N.P.A.; Son, N.K. (2017) Bacillys subtilis HU58 immobilized in micropores of diatomite for using in self-helaing concrete. Procedia Eng. 171, 598-605. https://doi.org/10.1016/j.proeng.2017.01.385
Shaheen, N.; Khushnood, R.A.; Khaliq, W.; Murtaza, H.; Iqbal, R.; Khan, M.H. (2019) Synthesis and characterization of bio-immobilized nano/micro inert and reactive additives for feasibility investigation in self-healing concrete. Constr. Build. Mater. 226, 492-506. https://doi.org/10.1016/j.conbuildmat.2019.07.202
De Belie, N. (2016) Application of bacteria in concrete: a critical evaluation of the current status. RILEM Tech. Lett. 1, 56-61. https://doi.org/10.21809/rilemtechlett.2016.14
Zhang, J.; Liu, Y.; Feng, T.; Zhou, M.; Zhao, L.; Zhou, A.; Li, Z. (2017) Immobilizing bacteria in expanded perlite for the crack self-healing in concrete. Constr. Build. Mater. 148, 610-617. https://doi.org/10.1016/j.conbuildmat.2017.05.021
Zhang, J.; Zhao, C.; Zhou, A.; Yang, C.; Zhao, L.; Li, Z. (2019) Aragonite formation induced by open cultures of microbial consortia to heal cracks in concrete: Insights into healing mechanisms and crystal polymorphs. Constr. Build. Mater. 224, 815-822. https://doi.org/10.1016/j.conbuildmat.2019.07.129
Liu, S.; Bundur, Z.B.; Zhu, J.; Ferron, R.D. (2016) Evaluation of self-healing of internal cracks in biomimetic mortar using coda wave interferometry. Cem. Concr. Res. 83, 70-78. https://doi.org/10.1016/j.cemconres.2016.01.006
Jadhav, U.U.; Lahoti, M.; Chen, Z.; Qiu, J.; Cao, B.; Yang, E.H. (2018) Viability of bacterial spores and crack healing in bacteria-containing geopolymer. Constr. Build. Mater. 169, 716-723. https://doi.org/10.1016/j.conbuildmat.2018.03.039
Singh, H.; Gupta, R. (2020) Cellulose fiber as bacteria-carrier in mortar: Self-healing quantification using UPV. J. Build. Eng. 28, 101090. https://doi.org/10.1016/j.jobe.2019.101090
Wang, J.Y.; Soens, H.; Verstraete, W.; De Belie, N. (2014) Self-healing concrete by use of microencapsulated bacterial spores. Cem. Concr. Res. 56, 139-152. https://doi.org/10.1016/j.cemconres.2013.11.009
Jonkers, H.M.; Thijssen, A.; Muyzer, G.; Copuroglu, O.; Schlangen, E. (2010) Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol. Eng. 36 [2], 230-235. https://doi.org/10.1016/j.ecoleng.2008.12.036
Reeksting, B.J.; Hoffmann, T.D.; Tan, L.; Paine, K.; Gebhard, S. (2020) In-depth profiling of calcite precipitation by environmental bacteria reveals fundamental mechanistic differences with relevance to application. Appl. Environ. Microbiol. 86 [7], e02739-19. https://doi.org/10.1128/AEM.02739-19 PMid:31980427 PMCid:PMC7082560
Da Silva, F.B.; De Belie, N.; Boon, N.; Verstraete, W. (2015) Production of non-axenic ureolytic spores for self-healing concrete applications. Constr. Build. Mater. 93, 1034-1041. https://doi.org/10.1016/j.conbuildmat.2015.05.049
Silva, F.B.; Boon, N.; De Belie, N.; Verstraete, W. (2015) Industrial application of biological self-healing concrete: Challenges and economical feasibility. J. Commer. Biotechnol. 21 [1], 31-38. https://doi.org/10.5912/jcb662
Basilisk - Basilisk self-healing concrete. [consulted 2020 May 29]. Available from: https://www.basiliskconcrete.com.
Yang, Z.; Hollar, J.; He, X.; Shi, X. (2011) A self-healing cementitious composite using oil core/silica gel shell microcapsules. Cem. Concr. Compos. 33 [4], 506-512. https://doi.org/10.1016/j.cemconcomp.2011.01.010
Van Tittelboom, K.; Tsangouri, E.; Van Hemelrijck, D.; De Belie, N. (2015) The efficiency of self-healing concrete using alternative manufacturing procedures and more realistic crack patterns. Cem. Concr. Compos. 57, 142-152. https://doi.org/10.1016/j.cemconcomp.2014.12.002
Escobar, M.M.; Vago, S.; Vázquez, A. (2013) Self-healing mortars based on hollow glass tubes and epoxy-amine systems. Compos. Part B: Eng. 55, 203-207. https://doi.org/10.1016/j.compositesb.2013.06.023
Joseph, C.; Jefferson, A.D.; Isaacs, B.; Lark, R.; Gardner, D. (2010) Experimental investigation of adhesive-based self-healing of cementitious materials. Mag. Concr. Res. 62 [11], 831-843. https://doi.org/10.1680/macr.2010.62.11.831
Dry, C. (1994) Matrix cracking repair and filling using active and passive modes for smart timed release of chemicals from fibers into cement matrices. Smart Mater. Struct. 3 [2], 118-123. https://doi.org/10.1088/0964-1726/3/2/006
Davies, R.; Teall, O.; Pilegis, M.; Kanellopoulos, A.; Sharma, T.; Jefferson, A.; et al. (2018) Large scale application of self-healing concrete: Design, construction, and testing. Front. Mater. 5. https://doi.org/10.3389/fmats.2018.00051
Teall, O.; Davies, R.; Pilegis, M.; Kanellopoulos, A.; Sharma, T.; Paine, K.; et al. (2016) Self-healing concrete full-scale site trials. Proc. 11th fib Int. PhD Symp. Civ. Eng. FIB 2016.
Li, Z.; Souza, L.R; Litina, C.; Markaki, A.E.; Al-Tabbaa, A. (2019) Feasibility of using 3D printed polyvinyl alcohol (PVA) for creating sef-healing vascular tunnels in cement system. Mater. 12 [23], 3872. https://doi.org/10.3390/ma12233872 PMid:31771222 PMCid:PMC6926814
Minnebo, P.; Thierens, G.; De Valck, G.; Van Tittelboom, K.; De Belie, N.; Van Hemelrijck, D.; et al. (2017) A novel design of autonomously healed concrete: Towards a vascular healing network. Mater. 10 [1], 49. https://doi.org/10.3390/ma10010049 PMid:28772409 PMCid:PMC5344598
Schlangen, E.; Joseph, C. (2013) Modelling of self-healing cementitious materials. In: de Rooij M., Van Tittelboom K., De Belie N., Schlangen E. (eds) Self-Healing Phenomena in Cement-Based Materials. RILEM State-of-the-Art Reports, vol 11, 217-240. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6624-2_5
Ismail, M.; Toumi, A.; François, R.; Gagné, R. (2008) Effect of crack opening on the local diffusion of chloride in cracked mortar samples. Cem. Concr. Res. 38 [8-9], 1106-1111. https://doi.org/10.1016/j.cemconres.2008.03.009. https://doi.org/10.1016/j.cemconres.2008.03.009
Snoeck, D.; Steuperaert, S.; Van Tittelboom, K.; Dubruel, P.; De Belie, N. (2012) Visualization of water penetration in cementitious materials with superabsorbent polymers by means of neutron radiography. Cem. Concr. Res. 42 [8], 1113-1121. https://doi.org/10.1016/j.cemconres.2012.05.005. https://doi.org/10.1016/j.cemconres.2012.05.005
Van Belleghem, B.; Montoya, R.; Dewanckele, J.; Van Den Steen, N.; De Graeve, I.; Deconinck, J.; et al. (2016) Capillary water absorption in cracked and uncracked mortar - A comparison between experimental study and finite element analysis. Constr. Build. Mater. 110, 154-162. https://doi.org/10.1016/j.conbuildmat.2016.02.027
Cuenca, E.; Ferrara, L. (2020) Fracture toughness parameters to assess crack healing capacity of fiber reinforced concrete under repeated cracking-healing cycles. Theor. Appl. Fract. Mech. 106, 102468. https://doi.org/10.1016/j.tafmec.2019.102468
Yang, Y.; Yang, E.H.; Li, V.C. (2011) Autogenous healing of engineered cementitious composites at early age. Cem. Concr. Res. 41 [2], 176-183. https://doi.org/10.1016/j.cemconres.2010.11.002
Yang, Y.; Lepech, M.D.; Yang, E.H.; Li, V.C. (2009) Autogenous healing of engineered cementitious composites under wet-dry cycles. Cem. Concr. Res. 39 [5], 382-390. https://doi.org/10.1016/j.cemconres.2009.01.013
Yildirim, G.; Sahmaran, M.; Ahmed, H.U. (2015) Influence of hydrated lime addition on the self-healing capability of high-volume fly ash incorporated cementitious composites. J. Mater. Civ. Eng. 27 [6]. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001145
Zhong, W.; Yao, W. (2008) Influence of damage degree on self-healing of concrete. Constr. Build. Mater. 22 [6], 1137-1142. https://doi.org/10.1016/j.conbuildmat.2007.02.006
Shahid, K.A.; Jaafar, M.F.M.; Yahaya, F.M. (2014) Self-healing behaviour of pre-cracked POFA-concretes in different curing conditions. J. Mech. Eng. Sci. 7 [1], 1227-1235. https://doi.org/10.15282/jmes.7.2014.22.0120
Karaiskos, G.; Tsangouri, E.; Aggelis, D.G.; Van Tittelboom, K.; De Belie, N.; Van Hemelrijck, D. (2016) Performance monitoring of large-scale autonomously healed concrete beams under four-point bending through multiple non-destructive testing methods. Smart Mater. Struct. 25 [5], 055003. https://doi.org/10.1088/0964-1726/25/5/055003
Granger, S.; Loukili, A.; Pijaudier-Cabot, G.; Chanvillard, G. (2007) Experimental characterization of the self-healing of cracks in an ultra high performance cementitious material: Mechanical tests and acoustic emission analysis. Cem. Concr. Res. 37 [4], 519-527. https://doi.org/10.1016/j.cemconres.2006.12.005
Van Tittelboom, K.; De Belie, N.; Lehmann, F.; Grosse, C.U. (2012) Acoustic emission analysis for the quantification of autonomous crack healing in concrete. Constr. Build. Mater. 28 [1], 333-341. https://doi.org/10.1016/j.conbuildmat.2011.08.079
Hannant, D.J.; Keer, J.G. (1983) Autogenous healing of thin cement based sheets. Cem. Concr. Res. 13 [3], 357-365. https://doi.org/10.1016/0008-8846(83)90035-2. https://doi.org/10.1016/0008-8846(83)90035-2
Silva, E.F.; Moreira, M.; Manzano M.A.R.; Blanco, R. (2016) Case study of permeability-reducing admixture use in anti-flotation slabs: building in Brasilia, Brazil. J. Build Pathol. Rehabil. 2, 1. https://doi.org/10.1007/s41024-016-0014-5
Sierra-Beltran, M.G.; Jonkers, H.M.; Mors, R.M.; Mera-Ortiz, M. (2015) Field application of self-healing concrete with natural fibres as linings for irrigation canals in Ecuador. ICSHM 2015: Proceedings of the 5th International Conference on Self-Healing Materials, Durham, USA, 22-24 June 2015.
Mors, R.; Jonkers, H.M. (2019) Bacteria-based self-healing concrete: evaluation of full scale demonstrator projects. RILEM Tech. Lett. 40, 138-144. https://doi.org/10.21809/rilemtechlett.2019.93
Al-Tabbaa, A.; Lark, B.; Paine, K.; Jefferson, T.; Litina, C.; Gardner, D.; et al. (2018) Biomimetic cementitious construction materials for next-generation infrastructure. Proc. Inst. Civ. Eng. - Smart Infrastruct. Constr. 171 [2], 67-76. https://doi.org/10.1680/jsmic.18.00005
Van Mullem, T.; Gruyaert, E.; Caspeele, R.; De Belie, N. (2020) First large scale application with self-healing concrete in belgium: Analysis of the laboratory control tests. Materials. 13 [4], 997. https://doi.org/10.3390/ma13040997 PMid:32102197 PMCid:PMC7079619
Serna, P.; Lo Monte, F.; Mezquida-Alcaraz, E.J.; Cuenca, E.; Mechtcherine, V.; Reichardt, M.; et al. (2019) Upgrading the concept of UHPFRC for high durability in the cracked state: the concept of ultra high durability concrete (UHDC) in the approach of the H2020 project ReSHEALience. Sustainable Materials Systems and Structures SMSS 2019, Rovinj, Croatia, 20-22 March 2019.
Jefferson, T.; Javierre, E.; Freeman, B.; Zaoui, A.; Koenders, E.; Ferrara, L. (2018) Research progress on numerical models for self-healing cementitious materials. Adv. Mater. Interfaces. 5 [17], 1701378. https://doi.org/10.1002/admi.201701378
Van Belleghem, B.; Van den Heede, P.; Van Tittelboom, K.; De Belie, N. (2017) Quantification of the service life extension and environmental benefit of chloride exposed self-healing concrete. Mater. 10 [1], 5. https://doi.org/10.3390/ma10010005 PMid:28772363 PMCid:PMC5344592
Helene, P.; Guignone, G.; Vieira, G.; Roncetti, L.; Moroni, F. (2018) Evaluation of the chloride penetration and service life of self-healing concretes activated by crystalline catalyst. Rev. IBRACON Estrut. Mater. 11 [3], 544-563. https://doi.org/10.1590/s1983-41952018000300007
Van den Heede, P.; Mignon, A.; Habert, G.; De Belie, N. (2018) Cradle-to-gate life cycle assessment of self-healing engineered cementitious composite with in-house developed (semi-)synthetic superabsorbent polymers. Cem. Concr. Compos. 94, 166-180. https://doi.org/10.1016/j.cemconcomp.2018.08.017
van der Zwaag, S. (2007) An introduction to material design principles: damage prevention versus damage management. In: van der Zwaag S. (eds) Self Healing Materials. Springer Series in Materials Science, vol 100, 1-18. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6250-6_1
Mohammadreza Hassani, E.; Vessalas, K.; Sirivivatnanon, V.; Baweja, D. (2017) Influence of permeability-reducing admixtures on water penetration in concrete. ACI Mater. J. 114 [6], 911-922. https://doi.org/10.14359/51701002
Pazderka, J.; Hájková, E. (2016) Crystalline admixtures and their effect on selected properties of concrete. Acta Polytech. 56 [4], 306-311. https://doi.org/10.14311/AP.2016.56.0306
Van Mullem, T.; Anglani, G.; Dudek, M.; Vanoutrive, H.; Bumanis, G.; Litina, C.; et al. (2020) Addressing the need for standardization of test methods for self-healing concrete : an inter-laboratory study on concrete with macrocapsules. Sci. Technol. Advanc. Mater. 21 [1], 661-682. https://doi.org/10.1080/14686996.2020.1814117 PMid:33061839 PMCid:PMC7534348
Schlangen, E.; Sangadji, S. (2013) Addressing infrastructure durability and sustainability by self healing mechanisms - Recent advances in self healing concrete and asphalt. Proce. Engin. 54, 39-57. https://doi.org/10.1016/j.proeng.2013.03.005
Gardner, D.; Lark, R.; Jefferson, T.; Davies, R. (2018) A survey on problems encountered in current concrete construction and the potential benefits of self-healing cementitious materials. Case Stud. Constr. Mater. 8, 238-247. https://doi.org/10.1016/j.cscm.2018.02.002
Neville, A. (2000) Water and concrete: a love-hate relationship. Concr. Int. 22 [12], 34-38.
Roig-Flores, M. (2018) Self-healing concrete : efficiency evaluation and enhancement with crystalline admixtures. Universitat Politècnica de València - PhD Thesis.
Li, V.C.; Herbert, E. (2012) Robust self-healing concrete for sustainable infrastructure. J. Adv. Concr. Technol. 10, [6], 207-218. https://doi.org/10.3151/jact.10.207
Shanmuga Priya, T.; Ramesh, N.; Agarwal, A.; Bhusnur, S.; Chaudhary, K. (2019) Strength and durability characteristics of concrete made by micronized biomass silica and Bacteria-Bacillus sphaericus. Constr. Build. Mater. 226, 827-838. https://doi.org/10.1016/j.conbuildmat.2019.07.172
Nguyen, T.H.; Ghorbel, E.; Fares, H.; Cousture, A. (2019) Bacterial self-healing of concrete and durability assessment. Cem. Concr. Compos. 104, 103340. https://doi.org/10.1016/j.cemconcomp.2019.103340
Siddique, R.; Singh, K.; Kunal, P.; Singh, M.; Corinaldesi, V.; Rajor, A. (2016) Properties of bacterial rice husk ash concrete. Constr. Build. Mater. 121, 112-119. https://doi.org/10.1016/j.conbuildmat.2016.05.146
Huseien, G.F.; Shah, K.W.; Sam, A.R.M. (2019) Sustainability of nanomaterials based self-healing concrete: An all-inclusive insight. J. Build. Eng. 23, 155-171. https://doi.org/10.1016/j.jobe.2019.01.032
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read here the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.