Pathology of Building Materials in Historic Buildings. Relationship Between Laboratory Testing and Infrared Thermography


  • C. Lerma Universitat Politècnica de València
  • Á. Mas Universitat Politècnica de València
  • E. Gil Universitat Politècnica de València
  • J. Vercher Universitat Politècnica de València
  • M. J. Peñalver Universitat Politècnica de València



Limestone, decay, physical properties, thermal analysis


Study of historic buildings requires a pathology analysis of the construction materials used in order to define their conservation state. Usually we can find capillary moisture, salt crystalli-zation or density differences by deterioration. Sometimes this issue is carried out by destructive testing which determine materials’ physical and chemical characteristics. However, they are unfavorable regarding the building’s integrity, and they are sometimes difficult to implement. This paper presents a technique using infrared thermography to analyze the existing pathology and has the advantage of being able to diagnose inaccessible areas in buildings. The results obtained by this technique have been compared with those obtained in the laboratory, in order to validate this study and thus to extrapolate the methodology to other buildings and materials.


Download data is not yet available.


1. Fitzner, B. en VV. AA (1996). Técnicas de diagnóstico aplicadas a la conservación de los materiales de construcción en los edificios históricos. Sevilla: Junta de Andalucía.

2. Válek, J.; Kruschwitz, S.; Wostmann, J.; Kind, T.; Valach, J.; Kopp, C.; Lesák, J. (2010) Nondestructive investigation of wet building material: multimethodical approach. Journal of performance of constructed facilities, 462–472.

3. Danese, M.; Demsar, U.; Masini, N.; Charlton, M. (2010) Investigating material decay of historic buildings using visual analytics with multi-temporal infrared thermographic data. Archaeometry, 52 [3], 482–501.

4. Campbell, J.B. (1996) Introduction to remote sensing, 2° ed., Taylor & Francis, London.

5. Lerma, JL.; Cabrelles, M.; Portalés, C. (2011) Multitemporal thermal analysis to detect moisture on a building façade. Constr. Build. Mater. 25, 2190–2197.

6. Meola, C.; Carlomagno, G.M.; Giorleo, L. (2004) The use of infrared thermography for materials characterization. J. Mater. Process. Technol., 155–156, 1132–1137.

7. Rodríguez Li-án, C. (2011) Inspección mediante técnicas no destructivas de un edificio histórico: oratorio San Felipe Neri (Cádiz). Informes de la Construcción 63, 13–22.

8. Ca-as I. (2005) Thermal-physical aspects of materials used for the construction or rural buildings in Soria (Spain). Constr. Build. Mater. 19, 197–211.

9. Mercuri, F.; Zammit, U.; Orazi, N.; Paoloni, S.; Marinelli, M.; Scudieri, F. (2011) Active infrared thermography applied to the investigation of art and historic artefacts. J. Therm. Anal. Calorim. 104, 475–485.

10. Ordaz, J.; Esbert, R.M. (1988) Glosario de términos relacionados con el deterioro de las piedras de construcción. Mater. Construcc. 38 [209], ene-feb-mar, 1988.

11. González Cruz, E.M. (2003) Selección de materiales en la concepción arquitectónica bioclimática. Instituto de investigaciones de la Facultad de Arquitectura y Dise-o, Universidad de Zulia. Venezuela. PMid:12970009

12. Rodríguez-Li-án, C.; Morales-Conde, M.J.; Rubio-de Hita, P.; Pérez-Galve, F. (2012) Analysis of the influence of density on infrared thermography and of the scope of this technique in the detection of internal defects in wood. Mater. Construcc. 62 [305], 99–113.

13. Hammecker, C. (1995) The importance of the petrophysical properties and external factors in stone decay on monuments. Pageoph. 145, 337–361.

14. Scherer, G.W. (1990) The theory of drying. J Am Ceram Soc. 73, 3–14.

15. Freitas, D.S. (2000) Pore network simulation of evaporation of a binary liquid from a capillary porous médium. Transp. Porous Media. 40, 1–25.

16. Rirsch, E.; Zhang, Z. (2010) Rising damp in masonry walls and the importance of mortar properties. Constr. Build. Mater. 24, 1815–1820.

17. Hall, C.; Hoff, W.D. (2002) Water transport in brick, stone and concrete. London: Spon Press.

18. Oliver, A. (1988) Dampness in buildings. Oxford: BSP Professional Books.

19. Buj, O.; López, P.L.; Gisbert, J. (2010) Characterization of pore system and their influence on decay rates caused by salt weathering on limestones and dolostones quarried in Abanto (Zaragoza, Spain). Mater. Construcc, 60 [299], 99–114.

20. Rossi-Manaresi, R. (1988) Degradación del Patrimonio. Conferencia celebrada en la Facultad de Geografía e Historia. Valencia.

21. Gayo, E.; De Frutos, J.; Palomo, A.; Massa, S.A. (1996) Mathematical Model Simulating the Evaporation Processes in Building Materials: Experimental Checking through Infrared Thermography. Building and Environment, 31 [5], 469–475.

22. D'Oracio, M.; Munafò, P. (2013) A methodology for the evaluation of the hygrometric and mechanical properties of consolidated stones. International Journal of Architectural Heritage.

23. Binda, L.; Gardani, G.; Zanzi, L. (2010) Nondestructive testing evaluation of drying process in flooded full-scale masonry walls. J. Perform. Constr. Facil. 24, Sp. Issue: Flood Impact to Heritage Structures, 473–483.

24. De Clercq, H. (2008) Proc. Conference on salt weathering on buildings and stone sculptures. Copenhagen: Tech University of Denmark.



How to Cite

Lerma, C., Mas, Á., Gil, E., Vercher, J., & Peñalver, M. J. (2014). Pathology of Building Materials in Historic Buildings. Relationship Between Laboratory Testing and Infrared Thermography. Materiales De Construcción, 64(313), e009.



Research Articles