A Mexican kaolin deposit: XANES characterization, mineralogical phase analysis and applications


  • F. Vázquez Universidad Autónoma del Estado de Morelos, Cuernavaca
  • L. M. Torres Universidad Autónoma de Nuevo León
  • L. L. Garza Universidad Autónoma de Nuevo León
  • A. Martínez Universidad Autónoma de Nuevo León
  • W. López CEMEX, Cemex Technical Center




kaolin, characterization, minerals, ceramic, SEM


A kaolin obtained from Villa de Reyes, a region near to San Luis Potosí (México) was characterized by means of X-ray powder diffraction (XRD, optical microscopy (OM), scanning electron microscopy (SEM), X-ray fluorescence (XRF), X-Ray Absorption Near Edge Spectroscopy (XANES), thermal analysis (DTA/TGA), dilatometry (DIL), and chemical analysis. Mineralogical and morphological characteristics of the mineral are presented. The kaolin sample was formed mainly by kaolinite, but other minor phases were also detected such as quartz, cristobalite, tridymite, and dolomite. The high content of volcanic glass detected, by optical microscopy, revealed an incomplete kaolinization process of the raw material. The reddish color of the kaolin was associated with the free iron content in the form of limonite [FeO(OH)], which was determined by XANES. The influence of the particle size on the whiteness of kaolin was evaluated. Dilatometric analysis revealed a strong thermal expansion between 110 y 240 °C, which would difficult the use of this material in traditional ceramic applications. On the other hand the presence of glass and high temperature phases of SiO2, such as cristobalite and tridymite will favor its use in the cement industry.


Download data is not yet available.


(1) Murray, H. H.: “Traditional and new applications for kaolin, smectite, and palygorskite: a general overview”, Applied Clay Science, vol. 17 (2000), pp. 207-221. doi:10.1016/S0169-1317(00)00016-8

(2) Leite, J. Y. P.; Veras, M. M.; Santos, E. P.; Lima, R. F. S.; Paulo, J. B. A.; Pinheiro, M.: “Technological characterization of kaolin tailing from small-scale mining in RN and PB states-Brazil”, Minerals Engineering, vol. 20 (2007), pp. 959-961. doi:10.1016/j.mineng.2007.03.006

(3) Nguyen, L. D.; Loridant, S.; Launay, H.; Pigamo, A.; Dubois, J. L.; Millet, J. M. M.: “Study of new catalysts based on vanadium oxide supported on mesoporous silica for the partial oxidation of methane to formaldehyde: Catalytic properties and reaction mechanism”, Journal of Catalysis, vol. 237 (2006), pp. 38-48. doi:10.1016/j.jcat.2005.10.016

(4) Siddiquia, M. A.; Ahmeda, Z. A.; Saleemi, A.: “Evaluation of Swat kaolin deposits of Pakistan for industrial uses”, Applied Clay Science, vol. 29 (2005), pp. 55-72. doi:10.1016/j.clay.2004.09.005

(5) Galindo, R.: “Pastas y Vidriados en la Fabricación de Pavimentos y Revestimientos Cerámicos”, Faenza Editrice Ibérica, S.L., España (1994), p. 251.

(6) Toro, L.; Paponetti, A. M.; Passariello, B.: “Proceso Per la Rimozione del Ferro da Concentrati di Caolino, Quarzo ed Altri Materiali di Interese Industriale”, Italian Patent, nº 217070 A/90 (1990).

(7) Newns, A.; Pascoe, R.D.: “Influence of path length and slurry velocity on the removal of iron from kaolin using a high gradient magnetic separator”, Minerals Engineering, vol. 15 (2002), pp. 465-467. doi:10.1016/S0892-6875(02)00056-0

(8) Kuzev, L. V.; Seksenov, S. G.; Kuzeva, R. I.: “Vibration attrition pulverizing. Changing Scopes in Mineral Processing”, Proceedings of the 6th International Mineral Processing Symposium, Kusadasi, Turk., sept. 24-26 (1996), pp. 37-39.

(9) Torres-Martínez, L. M.; Rodríguez-Lugo, Rodríguez Lugo, V.; Rubio, E. L.; Castaño, V. M.: “Synthesis of Silicon Carbide from Rice Husk”, Journal of Environment and Pollution, vol. 18 (2002), pp. 377-378.

(10) Behl, S.; Willis, M. J.; Young, R. H.: “Colored titaniferous pigment, obtained by purifying kaolin, for paper coating”, Engelhard Corporation, USA, PCT Int. Appl. (1996), p. 27.

(11) Andrews, R. W.; Greenhill, D. A.; Golley, C. R. L.; May, A. A.: “A method of treating an aqueous suspension of kaolin”, Imerys Pigments, Inc., USA, PCT Int. Appl. (2000), p. 33.

(12) González, J. A.; Del C. Ruiz, Ruiz, M. del C.: “Bleaching of kaolins and clays by chlorination of iron and titanium”, Applied Clay Science, vol. 33 (2006), pp. 219-229. doi:10.1016/j.clay.2006.05.001

(13) Veglio, F.; Passariello, B.; Toro, L.; Marabini, A. M.: “Development of a bleaching process for a kaolin of industrial interest by oxalic, ascorbic, and sulfuric acids: preliminary study using statistical methods of experimental design”, Industrial & Engineering Chemistry Research, vol. 35 (1996), pp. 1680-1687. doi:10.1021/ie950427s

(14) Cameselle, C.; Núñez, M. J.; Lema, J. M.: “Leaching of kaolin iron-oxides with organic acids”, J. Chem Tech. Biotechnol., vol. 70 (1997), pp. 349-354. doi:10.1002/(SICI)1097-4660(199712)70:4<349::AID-JCTB791>3.0.CO;2-4

(15) Ambikadevi, V. R.; Lalithambika, M.: “Effect of organic acid on ferric iron removal from iron-stained kaolinite”, Applied Clay Science, vol. 16 (2000), pp. 133-145. doi:10.1016/S0169-1317(99)00038-1

(16) Norton, F. H.: “Cerámica Fina: Tecnología y Aplicaciones”, Ediciones Omega, S.A., Barcelona (1975), p. 44.

(17) Murthy, K.: “X-ray study of the solid solution of TiO2, Fe2O3 and Cr2O3 in mullite (3Al2O3.SiO2)”, Journal of the American Ceramic Society, vol. 43 (1960), pp. 267-274. doi:10.1111/j.1151-2916.1960.tb14595.x

(18) McNamara, E.: “Introduction to Ceramics”, Ceramics, vol II, The Pennsylvania State College, USA (1947), pp. 79-96.

(19) Richardson, D.: “Modern Ceramic Engineering, Properties, Processing and Use in Desing”, Marcel Dekker Inc., USA (1982), pp. 19- 20.

(20) Lozano, D.: “Dilatometría, aplicación en la cerámica tradicional”, México, (2000), pp. 33-42.




How to Cite

Vázquez, F., Torres, L. M., Garza, L. L., Martínez, A., & López, W. (2009). A Mexican kaolin deposit: XANES characterization, mineralogical phase analysis and applications. Materiales De Construcción, 59(294), 113–121. https://doi.org/10.3989/mc.2009.43507



Research Articles