Study of creep behavior of a calcarenite: San Julián´s stone (Alicante)


  • V. Brotóns Universidad de Alicante
  • S. Ivorra Universidad de Alicante
  • J. Martínez-Martínez Unidad Asociada CSIC- Universidad de Alicante
  • R. Tomás Universidad de Alicante
  • D. Benavente Unidad Asociada CSIC- Universidad de Alicante



rheological model, creep, soft rock, limestone, calcarenite


Rocks creep has a great importance in the evaluation of the long-term behaviour of elements built with or within these materials. In this work, a porous well-known limestone locally named as San Julián stone has been physically and mechanically characterized. Uniaxial compressive tests for 96 h. at constant stress are carried out. Long-term behaviour has been modelled by means of a well-known creep model, the CEB-FIP Model code 2010, used for modelling other stony-material (i.e. concrete). Furthermore, a rheological model has been proposed. The main aim of this work is to investigate the possibility of exploiting the vast experience accumulated in the study of concrete deformational long-term behaviour in order to obtaining a reasonable approach to the behaviour of the rock, for too long testing times difficult to implement in laboratory. A creep function adapted to the studied rock only dependent on its elastic and mechanical characteristics is also proposed in this work.


Download data is not yet available.


(1) Weng, M.C.; Tsai, L.S.; Hsieh, Y.M.; Jeng, F.S.: "An associated elastic-viscoplastic constitutive model for sandstone involving shear-induced volumetric deformation", International Journal of Rock Mechanics and Mining Sciences, vol. 47, nº 8 (2010), pp. 1263-1273.

(2) Guan, Z.; Jiang, Y.; Tanabashi, Y.: "Rheological parameter estimation for the prediction of long-term deformations in conventional tunnelling", Tunnelling and Underground Space Technology, vol. 24, nº 3 (2009), pp. 250-259.

(3) Nadimi, S.; Shahriar, K.; Sharifzadeh, M.; Moarefvand, P.: "Triaxial creep tests and back analysis of time-dependent behavior of Siah Bisheh cavern by 3-Dimensional Distinct Element Method", Tunnelling and Underground Space Technology, vol. 26, nº 1 (2011), pp. 155-162.

(4) Sterpi, D.; Gioda, G.: "Visco-Plastic Behaviour around Advancing Tunnels in Squeezing Rock", Rock Mechanics and Rock Engineering, vol. 42, nº 2 (2009), pp. 319-339.

(5) Shao, J.F.; Zhu, Q.Z.; Su, K.: "Modeling of creep in rock materials in terms of material degradation", Computers and Geotechnics, vol. 30, nº 7 (2003), pp. 549-555.

(6) Zuan, C.: "Analysis of a microcrack model and constitutive equations for time-dependent dilatancy of rocks", Geophysical Journal International, vol. 155, nº 2 (2003), pp. 601-608.

(7) Jandakaew, M.: "Stress-path dependency of rock salt", Rock Mechanics (2007), pp. 171-188.

(8) Berest, P.; Blum, P.A.; Charpentier, J.P.; Gharbi, H.; Vales, F.: "Very slow creep tests on rock samples", International Journal of Rock Mechanics and Mining Sciences, vol. 42, nº 4 (2005), pp. 569-576.

(9) Fuenkajorn, K.; Phueakphum, D.: "Effects of cyclic loading on mechanical properties of Maha Sarakham salt", Engineering Geology, vol. 112, nº 1-4 (2010), pp. 43-52.

(10) Fu, Z.; Guo, H.; Gao, Y.: "Creep damage characteristics of soft rock under disturbance loads", Journal of China University of Geosciences, vol. 19, nº 3 (2008), pp. 292-297.

(11) Anzani, A.; Garavaglia, E.; Binda, L.: "Long-term damage of historic masonry: A probabilistic model", Constr. Build. Mater., vol. 23, nº 2 (2009), pp. 713-724.

(12) Damjanac, B.; Fairhurst, C.: "Evidence for a Long-Term Strength Threshold in Crystalline Rock", Rock Mechanics and Rock Engineering, vol. 43, nº 5 (2010), pp. 513-531.

(13) Afrouz, A.; Harvey, J.M.: "RHEOLOGY OF ROCKS WITHIN SOFT TO MEDIUM STRENGTH RANGE", International Journal of Rock Mechanics and Mining Sciences, vol. 11, nº 7 (1974), pp. 281-290.

(14) Ma, L.-j.; Liu, X.-y.; Fang, Q.; Xu, H.-f.; Xia, H.-m.; Li, E.-b.; Yang, S.-g.; Li, W.-p.: "A New Elasto-Viscoplastic Damage Model Combined with the Generalized Hoek-Brown Failure Criterion for Bedded Rock Salt and its Application", Rock Mechanics and Rock Engineering, vol. 46, nº 1 (2013), pp. 53-66.

(15) P. Jongpradist, H.H.: "Influence of water content on and relationship between strength and creep behaviors of soft rock: experimental characterization", Rock Mechanics, Fuenkajorn & Phien-wej (eds) (2007), pp. 80-92.

(16) Kate, J.M.; Gokhale, C.S.: "Influence of moisture on triaxial compression behaviour of soft sandstone", Geotechnics of Hard Soils - Soft Rocks pp. 245-252., vol. 1, (1998).

(17) CEB/FIP: "Model Code 2010", Fib bulletins, vol. 55-56 (2010).

(18) AENOR: "UNE-22950-1. Propiedades mecánicas de las rocas. Determinación de la Resistencia. Resistencia a la compresión uniaxial.", Asociación Espa-ola de Normalización y Certificación (1990).

(19) Martinez-Martinez, J.; Benavente, D.; Garcia-del-Cura, M.A.: "Spatial attenuation: The most sensitive ultrasonic parameter for detecting petrographic features and decay processes in carbonate rocks", Engineering Geology, vol. 119, nº 3-4 (2011), pp. 84-95.

(20) Reyes, E.; Casati, M.J.; Gálvez, J.C.: "Study of the brickwork masonry cracking with a cohesive fracture model", Mater. Construcc., vol. 61, nº 303 (2011), pp. 431-449.

(21) Fort, R.; Fernandez-Revuelta, B.; Varas, M.J.; de Buergo, M.A.; Taborda-Duarte, M.: "Influence of anisotropy on the durability of Madridregion Cretaceous dolostone exposed to salt crystallization processes", Mater. Construcc., vol. 58, nº 289-90 (2008), pp. 161-177.

(22) Alemany, R.M.E.: "Alteration of granite stone used in building construction", Mater. Construcc., vol. 57, nº 288 (2007), pp. 77-88.

(23) Martin, J.D.: "Using XPowder: A software package for Powder X-Ray diffraction analysis.", D.L. GR 1001/04.ISBN 84-609-1497-6, (2004), pp. 105.

(24) Dunham, R.J.: "Classification of carbonate rocks according to depositional texture", Memoirs American Association of Petroleum Geologists (1962), pp. 108-121.

(25) Louis Cereceda, M.; del Cura, M.M.G.; Spairani, Y.; de Blas, D.: "The Civil Palaces in Gravina street, Alicante: building stones and salt weathering", Mater. Construcc., vol. 51, nº 262 (2001), pp. 23-37.

(26) AENOR: "UNE-EN 1936: Métodos de ensayo para piedra natural. Determinación de la densidad real y aparente y de la porosidad abierta y total", Asociación Espa-ola de Normalización y Certificación (2007).

(27) Anon.: "Classification of rocks and soils for engineering geological mapping part I: Rock and soil materials", Bulletin of the International Association of Engineering Geology - Bulletin de l'Association Internationale de Géologie de l'Ingénieur, vol. 19, nº 1 (1979), pp. 364-371.

(28) Farmer, I.W.: "Engineering properties of rocks", E. and F. N. Spon Ltd.; London, vol.; nº (1968),

(29) Anon.: "Classification of the strength of the rock matrix", International Society for Rock Mechanics (1978).

(30) Rodrigues, G.S.S.; Figueiredo, E.P.: "Static modulus of elasticity of concrete measured by the ultrasonic method", Mater. Construcc., vol. 53, nº 271-72 (2003), pp. 47-58.




How to Cite

Brotóns, V., Ivorra, S., Martínez-Martínez, J., Tomás, R., & Benavente, D. (2013). Study of creep behavior of a calcarenite: San Julián´s stone (Alicante). Materiales De Construcción, 63(312), 581–595.



Research Articles

Most read articles by the same author(s)