3D Computational Simulation of Calcium Leaching in Cement Matrices


  • J. J. Gaitero Tecnalia
  • J. S. Dolado Tecnalia
  • C. Neuen Fraunhofer-Institute for Algorithms and Scientific Computing SCAI
  • F. Heber University of Bonn
  • E. A.B. Koenders Delf University of Technology




Cement paste, Microstructure, Modelization, Durability, Transport properties


Calcium leaching is a degradation process consisting in progressive dissolution of the cement paste by migration of calcium atoms to the aggressive solution. It is therefore, a complex phenomenon involving several phases and dissolution and diffusion processes simultaneously. Along this work, a new computational scheme for the simulation of the degradation process in three dimensions was developed and tested. The toolkit was used to simulate accelerated calcium leaching by a 6M ammonium nitrate solution in cement matrices. The obtained outputs were the three dimensional representation of the matrix and the physicochemical properties of individual phases as a consequence of the degradation process. This not only makes it possible to study the evolution of such properties as a function of time but also as a function of the position within the matrix. The obtained results are in good agreement with experimental values of the elastic modulus in degraded and undegraded samples.


Download data is not yet available.


1. Carde, C.; Francois, R.; Torrenti, J.M. (1996) Leaching of both calcium hydroxide and C-S-H from cement paste: modeling the mechanical behaviour. Cem. Concr. Res. 26 [8], 1257–1268. http://dx.doi.org/10.1016/0008-8846(96)00095-6

2. Nguyen, V.H.; Colina, H.; Torrenti, J.M.; Boulay, C.; Nedjar, B. (2007) Chemo-mechanical coupling behaviour of leached concrete: Part I: Experimental results. Nucl. Eng. Des. 237 [20–21], 2083–2089. http://dx.doi.org/10.1016/j.nucengdes.2007.02.013

3. Barbarulo, R.; Marchand, J.; Zinder, K.A.; Prené, S. (2000) Dimensional analysis of ionic transport problems in hydrated cement systems. Part 1. Theoretical considerations. Cem. Concr. Res. 30 [12], 1955–1960. http://dx.doi.org/10.1016/S0008-8846(00)00383-5

4. Mainguy, M.; Coussy, O. (2000) Propagation fronts during calcium leaching and chloride penetration. J. Eng. Mech. 126 [3], 250–257. http://dx.doi.org/10.1061/(ASCE)0733-9399(2000)126:3(250)

5. Mainguy, M.; Tognazzi, C.; Torrenti, J.M.; Adenot, F. (2000) Modelling of leaching in pure cement paste and mortar. Cem. Concr. Res. 30 [1], 83–90. http://dx.doi.org/10.1016/S0008-8846(99)00208-2

6. Ulm, F-J.; Torrenti, J.M.; Adenot, F. (1999) Chemoporoplasticity of calcium leaching in concrete. J. Eng. Mech. 125 [10], 1200–1211. http://dx.doi.org/10.1061/(ASCE)0733-9399(1999)125:10(1200)

7. Adenot, F.; Buil, M. (1992) Modeling of the corrosion of cement paste by deionized water. Cem. Concr. Res. 22 [2–3], 489–496. http://dx.doi.org/10.1016/0008-8846(92)90092-A

8. Bentz, D.P.; Garboczi, E.J. (1992) Modelling the leaching of calcium hydroxide from cement paste: effects on pore space percolation and diffusivity. Mater. Struct. 25 [9], 523–533. http://dx.doi.org/10.1007/BF02472448

9. Gérard, B.; Le Bellego, C.; Bernard, O. (2002) Simplified modelling of calcium leaching of concrete in various environments. Mater. Struct. 35 [10], 632–640. http://dx.doi.org/10.1007/BF02480356

10. Nguyen, V.H.; Nedjar, B.; Torrenti, J.M. (2007) Chemo-mechanical coupling behaviour of leached concrete: Part II: Modelling. Nucl. Eng. Des. 237 [20–21], 2090–2097. http://dx.doi.org/10.1016/j.nucengdes.2007.02.012

11. Nakarai, K.; Ishida, T.; Maekawa, K. (2006) Modeling of calcium leaching from cement hydrates coupled with micro-pore formation. J. Adv. Concr. Technol. 4 [3], 395–407. http://dx.doi.org/10.3151/jact.4.395

12. Gawin, D.; Pesavento, F.; Schrefler, B.A. (2009) Modeling deterioration of cementitious materials exposed to calcium leaching in non-isothermal conditions. Comput. Method Appl. M. 198 [37–40], 3051–3083. http://dx.doi.org/10.1016/j.cma.2009.05.005

13. Gawin, D.; Pesavento, F.; Schrefler, B.A. (2008) Modeling of cementitious materials exposed to isothermal calcium leaching, considering process kinetics and advective water flow. Part 1: Theoretical model. Comput. Methods App. M. 45 [25–26], 6221–6240.

14. Berner, U.R. (1998) Modeling the incongruent dissolution of hydrated cement materials. Radiochim. Acta. 44–45 [2], 387–393. http://www.degruyter.com/view/j/ract.1988.44-45.issue-2/ract.1988.4445.2.387/ract.1988.4445.2.387.xml

15. Van Breugel, K. (1995) Numerical simulation of hydration and microstructural development in hardening cement-based materials (I) theory. Cem. Comcr. Res. 25 [2], 319–331. http://dx.doi.org/10.1016/0008-8846(95)00017-8

16. Richardson, I.G.; Groves, G.W. (1992) Models for the composition and structure of calcium silicate hydrate (C-S-H) gel in hardened tricalcium silicate pastes. Cem. Concr. Res. 22 [6], 1001–1010. http://dx.doi.org/10.1016/0008-8846(92)90030-Y

17. Cong, X.D.; Kirkpatrick, R.J. (1996) 29MAS NMR study of the structure of calcium silicate hydrate. Adv. Cem. Based Mater. 3 [3–4], 144–56. http://dx.doi.org/10.1016/S1065-7355(96)90046-2

18. Fuji, K.; Kondo, W. (1983) Estimation of thermochemical data for calcium silicate hydrate (C-S-H). J. Am. Ceram. Soc. 66 [12], 220–221.

19. Li, Y-H.; Gregory, S. (1974) Diffusion of ions in sea water and in deep-sea sediments. Geochim. Cosmochim. Ac. 38 [5], 703–714. http://dx.doi.org/10.1016/0016-7037(74)90145-8

20. Bangerth, W.; Hartmann, R.; Kanschat, G. (2007) deal. II-A general-purpose object-oriented finite element library. ACM Trans. Math. Softw. 33 [4], 24/1–24/27.

21. Neuen, C. (2010) Ein multiskalenansatz zur Poisson-Nernst-Planck gleichung (A multiscale approach to the Poisson-Nernst-Planck equation). Diplomathesis. University of Bonn, Bonn (2010). http://wissrech.ins.uni-bonn.de/teaching/diplom/diplom_neuen.pdf

22. Gaitero, J.J.; Campillo, I.; Guerrero, A. (2008) Reduction of the calcium leaching rate of cement paste by addition of silica nanoparticles. Cem. Concr. Res. 38 [8–9], 1112–1118. http://dx.doi.org/10.1016/j.cemconres.2008.03.021

23. Constantinides, G.; Ulm, F-J. (2004) The effect of two types of C-S-H on the elasticity of cement-based materials: results from nanoindentation and micromechanical modelling. Cem. Concr. Res. 3 [1], 27–80.

24. Heukamp, F.H.; Ulm, F-J.; Germaine, J.T. (2001) Poroplastic properties of calcium leached cement-based materials. Cem. Concr. Res. 33 [8], 1155–1173. http://dx.doi.org/10.1016/S0008-8846(03)00024-3

25. Chen, J.J.; Thomas, J.J.; Jennings, H.M. Preparation of single-phase C-S-H specimens from hydrated tricalcium silicate pastes. http://www.civil.northwestern.edu/people/thomas/pdf/Chen_CSHPrep_CCR_sub.pdf

26. Mori, T.; Tanaka, K. (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. Mater 21 [5], 571–574. http://dx.doi.org/10.1016/0001-6160(73)90064-3

27. Manzano, H.; Dolado, J.S.; Ayuela, A. (2009) Elastic properties of the main species present in Portland cement pastes. Acta Mater. 57 [5], 1666–1674. http://dx.doi.org/10.1016/j.actamat.2008.12.007

28. Manzano, H.; Dolado, J.S.; Guerrero, A.; Ayuela, A. (2007) Mechanical properties of crystalline calcium-silicate-hydrates: comparison with cementitious C-S-H gels. Phys. Status Solidi A. 204 [6], 1775–1780. http://dx.doi.org/10.1002/pssa.200675359

29. Gaitero, J.J. (2008) Multi-scale study of the fibre-matrix interface and calcium leaching in high performance concrete. Ph.D. thesis. University of the Bask Country (UPV-EHU), Bilbao (2008). http://www.mendeley.com/profiles/jon-gaitero/publications/journal

30. Project COmputationally Driven design of Innovative Cement-based materials (CODICE). CP-FP 214030-2. Final report.

31. Go-i, S.; Guerrero, A.; Puertas, F.; Hernández, M.S.; Palacios, M.; Dolado, J.S.; Zhu, W.; Howind, T. (2011) Textural and mechanical characterization of C-S-H gels from hydration of synthetic T1-C3S, β-C2S and their blends. Mater. Construcc. 61 [302], 169–183.

32. Acker, P. (2001) Micromechanical analysis of creep and shrinkage mechanisms. Topical keynote lecture in "Shrinkage and durability mechanics of concrete and other quasi-brittle materials", Elsevier, (2001).

33. Mondal, P.; Shah, S.P.; Marks, L.D.; Gaitero, J.J. (2010) Comparative study of the effects of microsilica and nanosilica in concrete. Transp. Res. Rec. [2141], 6–9. http://dx.doi.org/10.3141/2141-02

34. Gaitero, J.J.; Campillo, I.; Mondal, P.; Shah, S.P. (2010) Small changes can make a great difference. Transp. Res. Rec. [2141], 1–5. http://dx.doi.org/10.3141/2141-01

35. Constantinides, G.; Ulm, F-J. (2007) The nanogranular nature of C-S-H. J. Mech. Phys. Solids. 55 [1], 64–90. http://dx.doi.org/10.1016/j.jmps.2006.06.003



How to Cite

Gaitero, J. J., Dolado, J. S., Neuen, C., Heber, F., & Koenders, E. A. (2014). 3D Computational Simulation of Calcium Leaching in Cement Matrices. Materiales De Construcción, 64(316), e035. https://doi.org/10.3989/mc.2014.08813



Research Articles