The influence of temperature in a capillary imbibition salt weathering simulation test on Mokattam limestone
DOI:
https://doi.org/10.3989/mc.2015.00514Keywords:
Stone decay, Salt weathering, Limestone, DurabilityAbstract
Limestone is one of the most frequent building stones used in monuments in Egypt from ancient Egyptian times and salt weathering is one of the main threats to these monuments. During this work, cylindrical limestone samples (2 cm diameter and approx. 4 cm length) from Mokattam group, one of the most frequent materials in historic Cairo, were subjected, in a purpose-made simulation chamber, to laboratory salt weathering tests with a 10% weight NaCl solution at different temperatures (20, 30, 40 °C). During each test, temperature was kept constant and salt solutions flowed continuously imbibing samples by capillary rise resembling the way they get into building stone in many real cases. Air temperature, relative humidity inside the simulation chamber and also samples weight were digitally monitored and recorded. Results show the influence of temperature and the ratio between imbibitions and evaporation on the dynamics of salt crystallization in the samples.
Downloads
References
1. Rodriguez, N.C.; Doehne, E. (1999) Salt weathering: influence of evaporation rate, supersaturation and crystallization pattern. Earth Surface Processes and landforms. 24, 191–209. http://dx.doi.org/10.1002/(SICI)1096-9837(199903)24:3<191::AID-ESP942>3.0.CO;2-G
2. Benavente, D.; García del Cura, M.A.; Bernabeu, A.; Ordo-ez, S. (2001) Quantification of salt weathering in porous stones using an experimental continuous partial immersion method. Eng. Geol. 59 [3–4], 313–325. http://dx.doi.org/10.1016/S0013-7952(01)00020-5
3. McBride, E.F.; Picard, M.D. (2004) Origin of honeycombs and related weathering forms in Oligocene Macigno Sandstone, Tuscan Coast near Livorno, Italy. Earth Surface Processes and landforms. 29, 713–735. http://dx.doi.org/10.1002/esp.1065
4. Gomez-Heras, M.; Benavente, D.; Alvarez de Buergo, M.; Fort, R. (2004) Soluble salt minerals from pigeon droppings as potential contributors to the decay of stone based Cultural Heritage. Eur. J. Mineral. 16, 505–509. http://dx.doi.org/10.1127/0935-1221/2004/0016-0505
5. Scherer, G.W. (2004) Stress from crystallization of salt. Cem. Concr. Res. 34, 1613–1624. http://dx.doi.org/10.1016/j.cemconres.2003.12.034
6. Kamh, G.; Kallash, A.; Azzam, R. (2008) Factors controlling building susceptibility to earthquakes: 14-year recordings of Islamic archaeological sites in Old Cairo, Egypt: a case study. Environ. Geol. 56, 269–279. http://dx.doi.org/10.1007/s00254-007-1162-3
7. Fitzner, B.; Heinrichs, K.; La Bouchardiere, D. (2003) Weathering damage on Pharaonic sandstone monuments in Luxor-Egypt. Build. Environ. 38, 1089–1103. http://dx.doi.org/10.1016/S0360-1323(03)00086-6
8. Smith, B.J.; Torok, A.; McAlister, J.J.; Megarry, Y. (2003) Observations on the factors influencing stability of building stones following contour scaling: a case study of oolitic limestones from Budapest, Hungary. Build. Environ. 38 [9–10], 1173–1183. http://dx.doi.org/10.1016/S0360-1323(03)00076-3
9. Huinink, H.P.; Pel, L.; Kopinga, K. (2004) Simulating the growth of tafoni. Earth Surface Processes and landforms. 29, 1225–1233. http://dx.doi.org/10.1002/esp.1087
10. Goudie, A.S. (1999) A comparison of the relative resistance of limestones to frost and salt weathering. Permafrost and Periglacial Processes. 10, 309–316. http://dx.doi.org/10.1002/(SICI)1099-1530(199910/12)10:4<309::AID-PPP330>3.0.CO;2-C
11. Benavente, D.; Cueto, N.; Martínez-Martínez, J.; García del Cura, M.A.; Ca-averas, J.C. (2007) The influence of petrophysical properties on the salt weathering of porous building rocks. Environ. Geol. 52, 215–224. http://dx.doi.org/10.1007/s00254-006-0475-y
12. Nicholson, D.T. (2001) Pore properties as indicators of breakdown mechanisms in experimentally weathered limestones. Earth Surface Processes and Landforms. 26, 819–838. http://dx.doi.org/10.1002/esp.228
13. Chéné, G.; Bastian, G.; Brunjail, C.; Laurent, J.P. (1999) Accelerating weathering of tuffeau block submitted to wetting–drying cycles. Mater. Struct. 32 [221], 525–532. http://dx.doi.org/10.1007/BF02481637
14. Gomez-Heras, M.; Fort, R. (2007) Patterns of halite (NaCl) crystallisation in building stone conditioned by laboratory heating regimes. Environ. Geo. 52, 239–247. http://dx.doi.org/10.1007/s00254-006-0538-0
15. Scherer, G.W. (2000) Stress from crystallization of salt in pores. 9th International on Deterioration and Conservation of Stone, Venice, New York. Elsevier, 187–194. http://dx.doi.org/10.1016/B978-044450517-0/50100-8
16. Sawdy, A.; Heritage, A.; Pel, L. (2008) A review of salt transport in porous media, assessment methods and salt reduction treatments. SWBSS proceedings, 1–27. Ottosen LM et al. (Eds). Salt Weathering on Buildings and Stone Sculptures, Technical university of Denmark–Department of civil Engineering, Lyngby, Denmak. PMid:18224546
17. Fitzner, B.; Heinrichs, K.; La Bouchardiere, D. (2003) Limestone weathering of historical monuments in Cairo, Egypt. In Siegesmund, S.; Weiss, T. & Vollbrecht, A. (edit.) Natural stone, weathering phenomena, conservation strategies and case studies, Geological Society, London, Special Publication. 205, 217–239.
18. Goudie, A.S. (1974) Further experimental investigation of rock weathering by salt and other mechanical processes. Zeitschrift fur Geomorphologie supplement band. 21, 1–12.
19. Sperling, C.H.B.; Cooke, R.U. (1985) Laboratory simulation of rock weathering by salt crystallization and hydration processes in hot- arid environments. Earth Surface Processes and Landforms. 10 [6], 541–555. http://dx.doi.org/10.1002/esp.3290100603
20. Grossi, C.M.; Esbert, R.M. (1994) Las sales solubles en el deterioro de rocas monumentales; revisión bibliográfica. Mater. Construc. 44, 15–30. http://dx.doi.org/10.3989/mc.1994.v44.i235.579
21. Goudie, A. S.; Viles, H. A. (1997) Salt Weathering Hazards. John Wiley, Chichester.
22. Benavente, D.; García del Cura, M.A.; Ordo-ez, S. (2003) Salt influence on evaporation from porous building rocks. Construc. Build. Mat. 17, 113–122. http://dx.doi.org/10.1016/S0950-0618(02)00100-9
23. Hamed, A.; Aly, N.; Gomez-Heras, M.; Álvarez de Buergo, M. (submitted) New experimental method to study the combined effect of temperature and salt weathering. In Prikryl R et al. (Eds.). Geological Society Special Publication, Sustainability of traditional construction materials in modern Geol. Soc. Publishing House, Bath, series Special Publication.
24. Mac Adam, D.L. (1985) Colour Measurement–Theme and Variations, Second Revised Edition, Springer-Verlag.
25. Prasad, K.M.; Raheem, S.; Vijayalekshmi, P.; Kamala Sastri, C. (1996) Basic aspects and applications of tristimulus colorimetry–Review–Talanta. 1187–1206.
26. Commission Internationale de l'Eclairage (CIE), (1986) Colorimetry, 2nd edition. Publication CIE 15.2. Bureau central de la CIE, Paris, France, 83.
27. ASTM (2000) E313–00 Standard practice for calculating yellowness and whiteness indices from instrumentally measure color coordinates. ASTM, West Conshohocken, Pennsylvania.
28. Benavente, D.; Martínez-Verdú, F.; Bernabeu, A.; Viquiera, V.; Fort, R.; García del Cura, M.A.; Illueca, C.; Ordó-ez, S. (2003) Influence of surface roughness on colour changes in building stones. Color Research and Application. 28/5, 343–351. http://dx.doi.org/10.1002/col.10178
29. DIN (2010) EN ISO42887 Geometrical Product Specifications (GPS) - Surface texture: Profile method-Terms, definitions and surface texture parameters.
30. Folk, R.L. (1962) Classification of carbonate rocks- a symposium, American Association of Petroleum Geologists, Tulsa, Memoir. 62–84.
31. Scolle, P.A.; Scolle, D.S.U. (2003) A color guide to petrography of carbonate rocks, grains, textures, porosity, diagenesis. American Association of Petroleum Geologiests, Tulsa, Memoir. 77, 394–406.
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Consejo Superior de Investigaciones Científicas (CSIC)
This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read here the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.