Durability and mechanical properties of concretes with limestone filler with particle packing
DOI:
https://doi.org/10.3989/mc.2024.366423Keywords:
Sustainability, Concrete durability, Packing, Chloride migrationAbstract
This study aims to present alternatives to reduce the demand of cement in concrete production based on particle packing concepts. Physical and mechanical characteristics of concretes, as well as the resistance to chlorides action were analyzed. The tests conducted in this study included compressive strength, chloride migration, capillary absorption tests and wetting and drying cycles in 1M sodium chloride solution. Mixtures containing limestone filler presented satisfactory results compared to the reference mixture with particle packing. Excellent results were obtained for concrete with cement consumption of 253.34 kg.m-3 in terms of compressive strength, binder index, capillary absorption and depassivation time of rebars, thus reinforcing the concept that partial cement replacement by limestone filler yields positive results in these properties. Worse results were obtained for concrete with a cement consumption of 161.86 kg.m-3, because it had a higher proportion of filler than cement. The electrochemical monitoring of the steel bars also shows that the packing of the aggregates was essential to delay the initiation of corrosion.
Downloads
References
Andrew R.M. 2019. Global CO2 emissions from cement production, 1928-2018. Earth System Science Data. 11 (4): 1675-1710. https://doi.org/10.5194/essd-11-1675-2019
London. Global Construction 2030. 2020. Global Construction Perspectives; Oxford Economics. Retrieved formhttps://www.oxfordeconomics.com/resource/future-of-construction/.
Yu R, Spiesz PR, Brouwers HJH. 2015. Development of ultra-high performance fibre reinforced concrete (UHPFRC): towards an efficient utilization of binders and fibres. Constr. Build. Mater. 79: 273-282. https://doi.org/10.1016/j.conbuildmat.2015.01.050
Kanamarlapudi L, Jonalagadda KB, Jagarapu DCK, Eluru A. 2020. Different mineral admixtures in concrete: a review. SN Appl. Sci. 2: 760. https://doi.org/10.1007/s42452-020-2533-6
BesseyGE. 1938. Procd. Symp. Chem. Cements. Stockholm.
Soroka I, Setter N. 1977. The effect of fillers on strength of cement mortars. Cem. Concr. Res.7 (4): 449-456. https://doi.org/10.1016/0008-8846(77)90073-4
Varhen C, Dilonardo I, Romano RCO, Pileggi RG, Figueiredo AD. 2016. Effect of the substitution of cement by limestone filler on the rheological behaviour and shrinkage of microconcretes. Constr. Build. Mater. 125: 375-386. https://doi.org/10.1016/j.conbuildmat.2016.08.062
Liu SH, Gao ZY, Rao MJ. 2011. Study on ultra-high-performance concrete containing limestone powder. Adv. Mater. Res.Trans Tech Publications Ltd, 2011. 250-253: 686-689. https://www.scientific.net/AMR.250-253.686. https://doi.org/10.4028/www.scientific.net/AMR.250-253.686
Cândido TG, Meira GR, Quattrone M, John M. 2022. Mechanical performance and chloride penetration resistance of concretes with low cement contents. Rev. IBRACON Estrut. Mater. 15 (6): e15608. https://doi.org/10.1590/s1983-41952022000600008
Huang W, Kazemi-Kamyab H, Sun W, Scrivener K. 2017. Effect of cement substitution by limestone on the hydration and microstructural development of ultra-high performance concrete (UHPC). Cem. Concr. Compos. 77: 86-101. https://doi.org/10.1016/j.cemconcomp.2016.12.009
Adu-Amankwah S, Zajac M, Stabler C, Lothenbach B, Black L. 2017. Influence of limestone on the hydration of ternary slag cements. Cem. Concr. Res. 100: 96-109. https://doi.org/10.1016/j.cemconres.2017.05.013
Panesar DK, Zhang R. 2020. Performance comparison of cement replacing materials in concrete: Limestone fillers and supplementary cementing materials - A review. Constr. Build. Mater. 251: 118866. https://doi.org/10.1016/j.conbuildmat.2020.118866
Cyr M, Lawrence P, Ringot E. 2006. Efficiency of mineral admixtures in mortars: Quantification of the physical and chemical effects of fine admixtures about compressive strength. Cem. Concr. Res. 36 (2): 264-277. https://doi.org/10.1016/j.cemconres.2005.07.001
Soroka I, Stern N.1976. Calcareous fillers and the compressive strength of portland cement. Cem. Concr. Res. 6 (3): 367-376. https://doi.org/10.1016/0008-8846(76)90099-5
Luna F J, Fernández Á, Alonso MC. (2018). The influence of curing and aging on chloride transport through ternary blended cement concrete. Mater. Construcc. 68 (332): e171. https://doi.org/10.3989/mc.2018.11917
Menéndez G, Bonavetti L, Irassar, EF. 2006. Ternary blended cement concrete. Part I: early age properties and mechanical strength. Mater. Construcc. 56 (284): 55-67. https://doi.org/10.3989/mc.2006.v56.i284.18
Bentz DP, Ardani A, Barrett T, Jones SZ, Lootens D, Peltz MA, Stutzman TSPE, Tanesi J, Weiss WJ. 2015. Multi-scale investigation of the performance of limestone in concrete, Constr. Build. Mater. 75: 1-10. https://doi.org/10.1016/j.conbuildmat.2014.10.042
BerodierE, ScrivenerK. 2014. Understanding the filler effect on the nucleation and growth of CSH. J. Am. Ceram. Soc. 97 (12): 3764-3773. https://doi.org/10.1111/jace.13177
Kakali G, Tsivilis S, Aggeli E, Bati M. 2000. Hydration products of C3A, C3S and Portland cement in the presence of CaCO3. Cem. Concr. Res. 30 (7): 1073-1077. https://doi.org/10.1016/S0008-8846(00)00292-1
MenendezG, BonavettiV, IrassarEF. 2003. Strength development of ternary blended cement with limestone filler and blast-furnace slag. Cem. Concr. Compos. 25 (1): 61-67. https://doi.org/10.1016/S0958-9465(01)00056-7
Weerdt, K, Haha MB, Saout G, Kjellsen KO, Justnes H, Lothenbach B. 2011. Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash. Cem. Concr. Res. 41 (3): 279-291. https://doi.org/10.1016/j.cemconres.2010.11.014
Ghrici M, Kenai S, Said-Mansour M. 2007. Mechanical properties and durability of mortar and concrete containing natural pozzolana and limestone blended cements. Cem. Concr. Compos. 29 (7): 542-549. https://doi.org/10.1016/j.cemconcomp.2007.04.009
Sun J, Chen Z. 2018. Influences of limestone powder on the resistance of concretes to the chloride ion penetration and sulfate attack. Powder Technol. 338: 725-733. https://doi.org/10.1016/j.powtec.2018.07.041
Steiner S, Proske T, Winnefeld F, Lothenbach B. 2022. Effect of limestone fillers on CO2 and water vapour diffusion in carbonated concrete. Cement. 8: 100027. https://doi.org/10.1016/j.cement.2022.100027
MehtaK. 1986. Concrete: structure, properties, and materials. Prentice Hall.
Abushama WJ, Tamimi AK, Tabsh SW, El-Emam MM, IbrahimA, Mohammed AliTK. 2023. Influence of optimum particle packing on the macro and micro properties of sustainable concrete. Sustainability. 15 (19): 14331. https://doi.org/10.3390/su151914331
Oliveira IR. 2000. Particle dispersion and packing: principles and applications in ceramic processing. São Paulo: Making Editorial Art. 224.
Santos RA, Meira GR, Bezerra WVDC, BragaFAV, Pontes DL. 2021. Use of numerical method for optimization of granulometric curves in eco-efficient concrete. Matéria, Rio de Janeiro. 26 (4): e13115. https://doi.org/10.1590/s1517-707620210004.1315
Associação Brasileira de Normas Técnicas. 2018. ABNT NBR 16697: Cimento Portland - Requisitos. ABNT, Rio de Janeiro.
Associação Brasileira de Normas Técnicas. 2017. NBR 16605: Cimento Portland e outros materiais em pó - determinação da massa específica. ABNT, Rio de Janeiro.
Grazia MT, Sanchez LFM, Romano RCO, Pileggi RG. 2019. Investigation of the use of continuous particle packing models (PPMs). On the fresh and hardened properties of low-cement concrete (LCC). systems. Construct. Build. Mater. 195: 524-536. https://doi.org/10.1016/j.conbuildmat.2018.11.051
Associação Brasileira de Normas Técnicas. 2022. NBR 17054: Agregados - determinação da composição granulométrica. ABNT, Rio de Janeiro.
Associação Brasileira de Normas Técnicas. 2021. ABNT NBR 16916 Agregado miúdo - Determinação da densidade e da absorção de água. ABNT, Rio de Janeiro.
Associação Brasileira de Normas Técnicas. 2018. ABNT NBR 5739 Concreto - Ensaio de compressão de corpos de prova cilíndricos. ABNT, Rio de Janeiro.
NT BUILD 492. 1999. Chloride migration coefficient from non-steady-state migration experiments.
Associação Brasileira de Normas Técnicas. 2012. ABNT NBR 9779: Argamassa e concreto endurecidos - Determinação da absorção de água por capilaridade. ABNT, Rio de Janeiro.
Associação Brasileira de Normas Técnicas. 2011. ABNT NBR 7222: Concreto e argamassa - Determinação da resistência à tração por compressão diametral de corpos de prova cilíndricos. ABNT, Rio de Janeiro.
Page MM, Page CL, Ngala T, Anstice DJ. 2002. Ion chromatographic analysis of corrosioan inhibitors in concrete. Constr. Build. Mater. 16 (2): 73-81. https://doi.org/10.1016/S0950-0618(02)00017-X
Vieira FMP. 2003. Contribuição ao estudo de corrosão de armaduras em concretos aramados com adição de sílica ativa. Tese de doutorado em Engenharia, UFRGS, Porto Alegre - RS.
Silva FG. 2006. Estudo de concretos de alto desempenho frente à ação de cloretos. Tese de Doutorado em Ciência e Engenharia dos Materiais, Escola Politécnica, Universidade de São Paulo, São Carlos - SP.
KishimotoI. 2010. Experimental study on the corrosion condition of steel bars in cracked reinforced concrete specimen. In: International Symposium on the Ageing Management & Maintenance of Nuclear Power Plants, 2010, Tokyo. Proceeding, Tokyo. 166-172.
Angst UM, Vennesland Ø. 2009. Critical chloride content in reinforced concrete - State of the art. Concrete Repair, Rehabilitation and Retrofitting II. Taylor & Francis Group. 311- 317, London. https://doi.org/10.1201/9781439828403.ch41
Angst UM, Elsener B, Larsen CK, Vennesland Ø. 2011. Chloride induced reinforcement corrosion: electrochemical monitoring of initiation stage and chloride threshold values. Corros. Sci. 53 (4): 1451-1464. https://doi.org/10.1016/j.corsci.2011.01.025
Meira GR, Ferreira RR, Jerônimo L, Carneiro AMP. 2014. Comportamento de concreto armado com adição de resíduos de tijolo cerâmico moído frente à corrosão por cloretos. Ambiente Construído. 14 (4): 33-52. https://doi.org/10.1590/S1678-86212014000400004
Ferreira RR. 2015. Análise da indução da corrosão por cloretos em concretos armados com adição de resíduo de tijolo moído a partir de ensaios acelerados. Dissertação de Mestrado - Programa de Pós-Graduação em Engenharia Civil da Universidade Federal de Pernambuco (UFPE): Recife - PE.
ASTMC876-09. 2022. Standard test method for corrosion potentials of uncoated reinforcing steel in concrete.
Fahim A, Ghods P, Isgor OB, Thomas MDA. 2018. A critical examination of corrosion rate measurement techniques applied to reinforcing steel in concrete. Mater. Corros. 69 (12): 1784-1799. https://doi.org/10.1002/maco.201810263
Alonso CA, Gulikers CJ, Polder R, Cigna OR, Vennesland MS, Raharinaivo A, Elsener B. 2004. Test methods for on-site corrosion rate meas-urement of steel reinforcement in concrete by means of the polarization resistance method. Mater. Struct. 37: 623-643. https://doi.org/10.1007/BF02483292
Bederina M, Makhloufi Z, Bouziani T. 2011. Effect of limestone fillers the physic-mechanical properties of limestone concrete. Phys. Procedia. 21: 28-34. https://doi.org/10.1016/j.phpro.2011.10.005
Wang D, Shi C, Farzadnia N, Shi Z, Jia H, Ou Z. 2018. A review on use of limestone powder in cement-based materials: Mechanism, hydration and microstructures. Constr. Build. Mater. 181: 659-672. https://doi.org/10.1016/j.conbuildmat.2018.06.075
Damineli BL, Kemeid FM, Aguiar S, John M. 2010. Measuring the ecoefficiency of cement use. Cem. Concr. Compos. 32 (8): 555-562. https://doi.org/10.1016/j.cemconcomp.2010.07.009
Damineli BL. 2013. Concepts for the formulation of low binder consumption concrete: rheological control, packing, and particle dispersion. São Paulo: Polytechnic School of the University of São Paulo.
Su N, Hsu KC, Chai HW. 2001. A simple mix design method for self-compacting concrete. Cem. Concr. Res. 31 (12): 1799-807. https://doi.org/10.1016/S0008-8846(01)00566-X
Su N, Miao B. 2003. A new method for the mix design of medium strength flowing concrete with low cement content. Cem. Concr. Compos. 25 (2): 215-222. https://doi.org/10.1016/S0958-9465(02)00013-6
Hüsken G, Brouwers HJH. 2008. A new mix design concept for earth-moist concrete: A theoretical and experimental study. Cem. Concr. Res. 38 (10): 1246-1259. https://doi.org/10.1016/j.cemconres.2008.04.002
Abd Elrahman M, Hillemeier B. 2014. Combined effect of fine fly ash and packing density on the properties of high-performance concrete: An experimental approach, Constr. Build. Mater. 58: 225-233. https://doi.org/10.1016/j.conbuildmat.2014.02.024
Kanadasan J, Razak HA. 2014. Mix design for self-compacting palm oil clinker concrete based on particle packing, Materials & Design (1980-2015). 56: 9-19. https://doi.org/10.1016/j.matdes.2013.10.086
Yu R, Van Onna DV, Spiesz P, Yu QL, Brouwers HJH. 2016. Development of ultra light weight fibre reinforced concrete applying expanded waste glass. J. Clean. Prod.112 (1): 690-701. https://doi.org/10.1016/j.jclepro.2015.07.082
Sunayana S, Barai SV. 2017. Recycled aggregate concrete incorporating fly ash: Comparative study on particle packing and conventional method, Constr. Build. Mater. 156: 376-86. https://doi.org/10.1016/j.conbuildmat.2017.08.132
Franco de Carvalho JM, Melo TV, Fontes WC, Batista JOS, Brigolini GJ, Peixoto RAF. 2019. More eco-efficient concrete: An approach on optimization in the production and use of waste-based supplementary cementing materials. Constr. Build. Mater. 206: 397-409. https://doi.org/10.1016/j.conbuildmat.2019.02.054
Ashish DK, Verma SK. 2019. Determination of optimum mixture design method for self-compacting concrete: Validation of method with experimental results. Constr. Build. Mater. 217: 664-678. https://doi.org/10.1016/j.conbuildmat.2019.05.034
Melo CVA, Gomes CC, Moraes KAM. 2019. A study of packing parameters that influence the fresh properties of self-compacting concrete. Cerâmica. 65 (375): 432-442. https://doi.org/10.1590/0366-69132019653752667
Lopes HMT, Peçanha ACC, Castro AL. 2020. Considerações sobre a eficiência de misturas de concreto de cimento Portland com base no conceito de empacotamento de partículas. Revista Matéria. 25(1). https://doi.org/10.1590/s1517-707620200001.0874
Andrade, C. 1993. Calculation of chloride diffusion coefficients in concrete from ionic migration measurements. Cem. Concr. Res. 23 (3): 724-742. https://doi.org/10.1016/0008-8846(93)90023-3
Luna FJ, Fernández Á, Alonso MC. 2018. The influence of curing and aging on chloride transport through ternary blended cement concrete. Mater. Construcc. 68 (332): e171. https://doi.org/10.3989/mc.2018.11917
Nilsson MH, Ngo Gjørv OE.1998. High-performance repair materials for concrete structure in the port of Gothenburg, in concrete under severe conditions 2: Environment and loading. Proceedings of the Second International Conference on Concrete Under Severe Conditions. 2: 1193-1198.
Mehta K, Monteiro JM. 2014. Concrete: microstructure, properties, and materials. 4th ed. New York: McGraw-Hill Education.
Jerônimo L., Meira GR, FilhoL CS. 2018. Performance of self-compacting concrete with wastes from heavy ceramic industry against corrosion by chlorides. Constr. Build. Mater. 169: 900-910. https://doi.org/10.1016/j.conbuildmat.2018.03.034
Ribeiro DV, Labrincha JA, Morelli MR. 2012. Effect of the addition of red mud on the corrosion parameters of reinforced concrete. Cem. Concr. Res .42 (1): 124-133. https://doi.org/10.1016/j.cemconres.2011.09.002
Medeiros MHF, Rocha FC, Medeiros-Junior RA. 2017. Corrosion potential: influence of moisture, water-cement ratio, chloride content, and concrete cover. Rev. IBRACON Estrut. Mater. 10(4): 864-885. https://doi.org/10.1590/s1983-41952017000400005
Tian L, Dai S, Yao X, Zhu H, Wu Q, Liu Z, Cheng S. 2022. Effect of nucleation seeding and triisopropanolamine on the compressive strength, chloride binding capacity and microstructure of cement paste. J. Build. Eng.52: 104382. https://doi.org/10.1016/j.jobe.2022.104382
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.