Lightweight concrete masonry units based on processed granulate of corn cob as aggregate
DOI:
https://doi.org/10.3989/mc.2015.04514Keywords:
Concrete, Brick, Organic raw material, Waste treatment, Compressive strengthAbstract
A research work was performed in order to assess the potential application of processed granulate of corn cob (PCC) as an alternative lightweight aggregate for the manufacturing process of lightweight concrete masonry units (CMU). Therefore, CMU-PCC were prepared in a factory using a typical lightweight concrete mixture for non-structural purposes. Additionally, lightweight concrete masonry units based on a currently applied lightweight aggregate such as expanded clay (CMU-EC) were also manufactured. An experimental work allowed achieving a set of results that suggest that the proposed building product presents interesting material properties within the masonry wall context. Therefore, this unit is promising for both interior and exterior applications. This conclusion is even more relevant considering that corn cob is an agricultural waste product.
Downloads
References
1. Younquist, J.; English, B.; Spelter, H.; Chow, P. (1993) Agricultural fibers in composition panels. In: Proceedings of the 27th international particleboard/composite materials symposium, 1993 March 30–31, Pullman, WA: Washington State University, 133–52.
2. Chow, P. (1974) Dry formed composite board from selected agricultural residues. World consultation on wood based panels. New Delhi, India: Food and Agriculture Organization of the United Nations.
3. Lertsutthiwong, P.; Khunthon, S.; Siralertmukul, K.; Noomun, K.; Chandrkrachang, S. (2008) New insulating particleboards prepared from mixture of solid wastes from tissue paper manufacturing and corn peel. Bioresource Technology 99 [11], 4841–4845. http://dx.doi.org/10.1016/j.biortech.2007.09.051 PMid:17977719
4. Khedari, J.; Nankongnab, N.; Fotios, S. (2008) Agricultural waste materials as thermal insulation for dwellings in Thailand: preliminary results. In: PLEA 2008: 25th conference on passive and low energy architecture, Dublin, 22nd–24th October 2008.
5. Stone, N. (2003) Thermal performance of straw bale wall systems. Ecological Building Network (EBNet), October 2003, 1–7.
6. Pinto, J.; Paiva, A.; Varum, H.; Costa, A.; Cruz, D.; Pereira, S.; Fernandes,L.; Tavares, P.; Agarwal, J. (2011) Corn's cob as a potential ecological thermal insulation material. Energy Buildings 43 [8], 1985–1990. http://dx.doi.org/10.1016/j.enbuild.2011.04.004
7. Statistic Division of the Food and Agriculture Organization of the United States (2014) Retrieved October 3, 2014, from http://faostat3.fao.org/faostat-gateway/go/to/download/
8. Pinto, J.; Cruz, D.; Paiva, A.; Pereira, S.; Tavares, P.; Fernandes, L.; Varum, H. (2012) Characterization of corn cob as a possible raw building material. Constr. Build. Mater. 34, 28–33. http://dx.doi.org/10.1016/j.conbuildmat.2012.02.014
9. Faustino, J.; Pereira, L.; Soares, S.; Cruz, D.; Paiva, A.; Varum, H.; Ferreira, J.; Pinto, J. (2012). Impact sound insulation technique using corn cob particleboard. Constr. Build. Mater. 37, 153–159. http://dx.doi.org/10.1016/j.conbuildmat.2012.07.064
10. Pinto, J.; Vieira, J.; Pereira, H.; Jacinto, C.; Vilela, P.; Paiva, A.; Pereira, S.; Cunha, V.; Varum, H. (2012) Corn cob lightweight concrete for non-structural applications. Constr. Build. Mater. 34, 346–351. http://dx.doi.org/10.1016/j.conbuildmat.2012.02.043
11. Momtazic, A.S.; Torkamana, J.; Ashorib, A. (2014) Using wood fiber waste, rice husk ash, and limestone powder waste as cement replacement materials for lightweight concrete blocks. Constr. Build. Mater. 50, 432–436. http://dx.doi.org/10.1016/j.conbuildmat.2013.09.044
12. Demirdag, S.; Ugur, I.; Sarac, S. (2008) The effects of cement/fly ash ratios on the volcanic slag aggregate lightweight concrete masonry units. Constr. Build. Mater. 22 [8], 1730–1735. http://dx.doi.org/10.1016/j.conbuildmat.2007.05.011
13. Bui, L.A.T.; Hwang, C.L.; Chen, C.T.; Lin, K.L.; Hsieh, M.Y (2012) Manufacture and performance of cold bonded lightweight aggregate using alkaline activators for high performance concrete. Constr. Build. Mater. 35, 1056–1062. http://dx.doi.org/10.1016/j.conbuildmat.2012.04.032
14. Tang, C.W.; Chen, H.J.; Wang, S.Y.; Spaulding, J. (2011) Production of synthetic lightweight aggregate using reservoir sediments for concrete and masonry. Cem. Concr. Compos. 33 [2], 292–300. http://dx.doi.org/10.1016/j.cemconcomp.2010.10.008
15. NP EN 772-13 (2012) Methods of test for masonry units. Part 13: Determination of net and gross dry density of masonry units (except for natural stone), Instituto Português de Qualidade, Lisboa (in Portuguese).
16. ASTM C 90-06a (2006) Standard Specification for Loadbearing Concrete Masonry Units, ASTM International.
17. NP EN 772-11 (2002) Methods of test for masonry units. Part 11: Determination of water absorption of aggregate concrete, manufactured stone and natural stone masonry units due to capillary action and the initial rate of water absorption of clay masonry units), Instituto Português de Qualidade, Lisboa (in Portuguese).
18. LNEC Report 20/01-NCCt (2001) Experimental assessment of the rain water penetration of an expanded clay masonry – Effect of an accelerated aging, Laboratório Nacional de Engenharia Civil – Departamento de Edifícios, Lisboa, (in Portuguese).
19. NP EN 12371 (2002) Natural stone test methods. Determination of frost resistance, Instituto Português de Qualidade, Lisboa (in Portuguese).
20. BS EN 771-3 (2011) Specification for masonry units. Aggregate concrete masonry units (dense and lightweight aggregates).
21. NP EN 772-1 (2002) Methods of test for masonry units. Part 1: Determination of compressive strength, Instituto Português de Qualidade, Lisboa (in Portuguese).
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.