A proposal for the maximum use of recycled concrete sand in masonry mortar design

Authors

  • E. Fernández-Ledesma Construction Engineering Area. University of Córdoba
  • J. R. Jiménez Construction Engineering Area. University of Córdoba
  • J. Ayuso Construction Engineering Area. University of Córdoba
  • V. Corinaldesi Department of Materials and Environment Engineering and Physics, Università Politecnica delle Marche
  • F. J. Iglesias-Godino Department of Chemical, Environmental, and Materials Engineering, University of Jaen

DOI:

https://doi.org/10.3989/mc.2016.08414

Keywords:

Mortar, Compressive Strength, Mechanical Properties, Retraction, Waste Treatment

Abstract


Natural sand mining from rivers and seashores is causing serious environmental problems in many parts of the world, whereas the fine fraction from recycling concrete waste is underutilized as a construction material. The aim of this paper is to determine the maximum replacement level of natural sand by recycled sand in the manufacturing of masonry mortar (M-10). For this purpose, five replacement levels were tested: 0%, 25%, 50%, 75% and 100% by volume. The mixes were made using cement CEM II/BL 32.5 N in a volumetric proportion of cement-to-aggregate of 1:5. A commercial admixture was used at a constant content. The amount of water was variable to achieve a consistency of 175±10 mm. The short- and long-term mortar properties were evaluated. The data were analyzed using a one-way ANOVA. In conclusion, a maximum percentage of 50% recycled concrete sand can be used in an indoor environment.

Downloads

Download data is not yet available.

References

1. Kamrath, P. (2013) Demolition techniques and production of construction and demolition waste (CDW) for recycling. In: Pacheco-Torgal, F., Tam, V.W.Y., Labrincha, J.A., Ding, Y. de Brito, J. (Eds.), Handbook of recycled concrete and demolition waste. Woodhead Publishing Limited, Cambridge, U.K., 186–208. http://dx.doi.org/10.1533/9780857096906.2.186

2. Coelho, A.; de Brito, J. (2013) Conventional demolition versus deconstruction techniques in managing construction and demolition waste (CDW). In: Pacheco-Torgal, F., Tam, V.W.Y., Labrincha, J.A., Ding, Y. de Brito, J. (Eds.), Handbook of recycled concrete and demolition waste. Woodhead Publishing Limited, Cambridge, U.K., 141–183. http://dx.doi.org/10.1533/9780857096906.2.141

3. Jiménez, J.R.; Agrela, F.; Ayuso, J.; López, M. (2011) A comparative study of recycled aggregates from concrete and mixed debris as materials for unbound road sub-base. Mater. Construcc. 61 [302], 289–302. http://dx.doi.org/10.3989/mc.2010.54009

4. Jiménez, J.R. (2013) Recycled aggregates (RAs) for roads. In: Pacheco-Torgal, F., Tam, V.W.Y., Labrincha, J.A., Ding, Y. de Brito, J. (Eds.), Handbook of recycled concrete and demolition waste. Woodhead Publishing Limited, Cambridge, U.K., 351–376. http://dx.doi.org/10.1533/9780857096906.3.351

5. Etxeberria, M.; Vázquez, E.; Marí, A.; Barra. M. (2007) Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete. Cem. Concr. Res. 37, 735–742. http://dx.doi.org/10.1016/j.cemconres.2007.02.002

6. Evangelista, L.; de Brito, J. (2007) Mechanical behaviour of concrete made with fine recycled concrete aggregates. Cem. Concr. Comp. 29, 397–401. http://dx.doi.org/10.1016/j.cemconcomp.2006.12.004

7. Kou, S.C.; Poon, C.S. (2009) Properties of concrete prepared with crushed fine stone, furnace bottom ash and fine recycled aggregate as fine aggregates. Constr. Build. Mater. 23, 2877–2886. http://dx.doi.org/10.1016/j.conbuildmat.2009.02.009

8. Pereira, P.; Evangelista, L.; de Brito, J. (2012) The effect of superplasticizers on the mechanical performance of concrete made with fine recycled concrete aggregates. Cem. Concr. Comp. 34, 1044–1052. http://dx.doi.org/10.1016/j.cemconcomp.2012.06.009

9. Evangelista, L.; de Brito, J. (2010) Durability performance of concrete made with fine recycled concrete aggregates. Cem. Concr. Compos. 32, 9–14. http://dx.doi.org/10.1016/j.cemconcomp.2009.09.005

10. Gonçalves, P.; de Brito, J. (2010) Recycled aggregate concrete (RAC) - comparative analysis of existing specifications. Mag. Con. Res. 62 [5], 339–346. http://dx.doi.org/10.1680/macr.2008.62.5.339

11. Evangelista, L.; de Brito, J. (2014) Concrete with fine recycled aggregates: a review. Europ. J. Envi. Civ. Eng. 18 [2], 129–172. http://dx.doi.org/10.1080/19648189.2013.851038

12. Corinaldesi, V.; Moriconi, G. (2009) Behaviour of cementitious mortars containing different kinds of recycled aggregate. Constr. Build. Mater. 23, 289–294. http://dx.doi.org/10.1016/j.conbuildmat.2007.12.006

13. Corinaldesi, V. (2009) Mechanical behaviour of masonry assemblages manufactured with recycled-aggregate mortars. Cem. Concr. Compos. 31, 505–510. http://dx.doi.org/10.1016/j.cemconcomp.2009.05.003

14. Dapena, E.; Alaejos, P.; Lobet, A.; Pérez, D. (2011) Effect of recycled sand content on characteristics of mortars and concretes. J. Mater. Civ. Eng. 23 [4], 414–422. http://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0000183

15. Vegas, I.; Azkarate, I.; Juarrero, A.; Frías, M. (2009) Design and performance of masonry mortars made with recycled concrete aggregates. Mater. Construcc. 59 [295], 5–18. http://dx.doi.org/10.3989/mc.2009.44207

16. Jiménez, J.R.; Ayuso, J.; López, M.; Fernández, J.M.; de Brito, J. (2013) Use of fine recycled aggregates from ceramic waste in masonry mortar manufacturing. Constr. Build. Mater. 40, 679–690. http://dx.doi.org/10.1016/j.conbuildmat.2012.11.036

17. Martínez, I.; Etxeberria, M.; Pavón, E.; Díaz, N. (2013) A comparative analysis of the properties of recycled and natural aggregate in masonry mortars. Constr. Build. Mater. 49, 384–392. http://dx.doi.org/10.1016/j.conbuildmat.2013.08.049

18. Braga, M.; de Brito, J.; Veiga, R. (2012) Incorporation of fine concrete aggregates in mortars. Constr. Build. Mater. 36, 960–968. http://dx.doi.org/10.1016/j.conbuildmat.2012.06.031

19. Neno, C.; de Brito, J.; Veiga, R. (2014) Using fine recycled concrete aggregate for mortar production. Mater. Res. 17 [1], 168–177. http://dx.doi.org/10.1590/S1516-14392013005000164

20. Ledesma, E.F.; Jiménez, J.R.; Fernández, J.M.; Galvín, A.P.; Agrela, F.; Barbudo, A. (2014) Properties of masonry mortars manufactured with fine recycled concrete aggregates. Constr. Build. Mater. 71, 289–98. http://dx.doi.org/10.1016/j.conbuildmat.2014.08.080

21. Cuenca-Moyano, G.M.; Martín-Morales, M.; Valverde-Palacios, I.; Valverde-Espinosa, I.; Zamorano, M. (2014) Influence of pre-soaked recycled fine aggregate on the properties of masonry mortar. Constr. Build. Mater. 70, 71–79. http://dx.doi.org/10.1016/j.conbuildmat.2014.07.098

22. Ulsen, C.; Kahn, H.; Hawlitschek, G.; Masini, E.A.; Angulo, S.C.; John, V.M. (2013) Production of recycled sand from construction and demolition waste. Constr. Build. Mater. 40, 1168–1173. http://dx.doi.org/10.1016/j.conbuildmat.2012.02.004

23. Rodrigues, F.; Carvalho, M.T.; Evangelista, L.; de Brito, J. (2013) Physical-chemical and mineralogical characterization of fine aggregates from construction and demolition waste recycling plants. J. Clean. Prod. 52, 438–445. http://dx.doi.org/10.1016/j.jclepro.2013.02.023

24. Cartuxo, F.; de Brito, J.; Evangelista, L.; Jiménez, J.R.; Ledesma, E.F. (2015) Rheological behaviour of concrete made with fine recycled concrete aggregates - Influence of the superplasticizers. Constr. Build. Mater. 89, 26–47. http://dx.doi.org/10.1016/j.conbuildmat.2015.03.119

25. Ferreira, L.; de Brito, J.; Barra, M. (2011) Influence of the pre-saturation of recycled coarse concrete aggregates on concrete properties. Mag. Conc. Res. 63 [8], 617–627. http://dx.doi.org/10.1680/macr.2011.63.8.617

26. Pereira, P.; Evangelista, L.; de Brito, J. (2012) The effect of superplasticisers on the workability and compressive strength of concrete made with fine recycled concrete aggregates. Constr. Build. Mater. 28, 722–729. http://dx.doi.org/10.1016/j.conbuildmat.2011.10.050

27. Jiménez, J.R.; Ayuso, J.; Agrela, F.; López, M.; Galvín, A.P. (2012) Utilisation of unbound recycled aggregates from selected CDW in unpaved rural roads. Resour. Conserv. Recy. 58, 88–97. http://dx.doi.org/10.1016/j.resconrec.2011.10.012

28. Jiménez, J.R.; Ayuso, J.; Galvín, A.P.; López, M.; Agrela, F. (2012) Use of mixed recycled aggregates with a low embodied energy from non-selected CDW in unpaved rural roads. Constr. Build. Mater. 34, 34–43. http://dx.doi.org/10.1016/j.conbuildmat.2012.02.042

29. Mefteh, H.; Kebaïli, O.; Oucief, H.; Berredjem, L.; Arabi, N. (2013) Influence of moisture conditioning of recycled aggregates on the properties of fresh and hardened concrete. J. Clean. Prod. 54, 282–288. http://dx.doi.org/10.1016/j.jclepro.2013.05.009

30. Poon, C.S.; Shui, Z.H.; Lam, L.; Fok, H.; Kou, S.C. (2004) Influence of moisture states of natural and recycled aggregates on the slump and compressive strength of concrete. Cem. Concr. Res. 34 [1], 31–36. http://dx.doi.org/10.1016/S0008-8846(03)00186-8

31. Kim, K.; Shin, M.; Cha, S. (2013) Combined effects of recycled aggregate and fly ash towards concrete sustainability. Constr. Build. Mater. 48, 499–507. http://dx.doi.org/10.1016/j.conbuildmat.2013.07.014

32. Kou, S.C.; Poon, C.S. (2013) Long-term mechanical and durability properties of recycled aggregate concrete prepared with the incorporation of fly ash. Cem. Concr. Compos.

33. Katz, A. (2003) Properties of concrete made with recycled aggregate from partially hydrated old concrete. Cem. Concr. Res. 33, 703–711. http://dx.doi.org/10.1016/S0008-8846(02)01033-5

34. Quattrone, M.; Angulo, S.C.; John, V.M. (2014) Energy and CO2 from high performance recycled aggregate production. Resour. Conserv. Recy. 90, 21–33. http://dx.doi.org/10.1016/j.resconrec.2014.06.003

35. Ledesma, E.F.; Jiménez, J.R.; Ayuso, J.; Fernández, J.M.; de Brito, J. (2015) Maximum feasible use of recycled sand from construction and demolition waste for eco-mortar production - Part-I: ceramic masonry waste. J. Clean Prod. 87, 692–706. http://dx.doi.org/10.1016/j.jclepro.2014.10.084. http://dx.doi.org/10.1016/j.jclepro.2014.10.084

36. Corinaldesi, V.; Giuggiolini, M.; Moriconi, G. (2002) Use of rubble from building demolition in mortars. Waste Manage. 22, 893–899. http://dx.doi.org/10.1016/S0956-053X(02)00087-9

37. Silva, J.; de Brito, J.; Veiga, R. (2010) Recycled red-clay ceramic construction and demolition waste for mortars production. J. Mater. Civ. Eng. 22 [3], 236–244. http://dx.doi.org/10.1061/(ASCE)0899-1561(2010)22:3(236)

38. Aye, T.; Oguchi, C.T. (2001) Resistance of plain and blended cement mortar exposed to severe sulphate attacks. Constr. Build. Mater. 25, 2988–2996. http://dx.doi.org/10.1016/j.conbuildmat.2010.11.106

39. Sahmaran, M.; Kasap, O.; Duru, K.; Yaman, I.O. (2007) Effects of mix composition and water–cement ratio on the sulfate resistance of blended cements. Cem. Concr. Compos. 29, 159–67. http://dx.doi.org/10.1016/j.cemconcomp.2006.11.007

40. Chen, J.; Jiang, M. (2009) Long-term evolution of delayed ettringite and gypsum in Portland cement mortars under sulphate erosion. Constr. Build. Mater. 23, 812–816. http://dx.doi.org/10.1016/j.conbuildmat.2008.03.002

Published

2016-03-30

How to Cite

Fernández-Ledesma, E., Jiménez, J. R., Ayuso, J., Corinaldesi, V., & Iglesias-Godino, F. J. (2016). A proposal for the maximum use of recycled concrete sand in masonry mortar design. Materiales De Construcción, 66(321), e075. https://doi.org/10.3989/mc.2016.08414

Issue

Section

Research Articles