A proposal for the maximum use of recycled concrete sand in masonry mortar design
DOI:
https://doi.org/10.3989/mc.2016.08414Keywords:
Mortar, Compressive Strength, Mechanical Properties, Retraction, Waste TreatmentAbstract
Natural sand mining from rivers and seashores is causing serious environmental problems in many parts of the world, whereas the fine fraction from recycling concrete waste is underutilized as a construction material. The aim of this paper is to determine the maximum replacement level of natural sand by recycled sand in the manufacturing of masonry mortar (M-10). For this purpose, five replacement levels were tested: 0%, 25%, 50%, 75% and 100% by volume. The mixes were made using cement CEM II/BL 32.5 N in a volumetric proportion of cement-to-aggregate of 1:5. A commercial admixture was used at a constant content. The amount of water was variable to achieve a consistency of 175±10 mm. The short- and long-term mortar properties were evaluated. The data were analyzed using a one-way ANOVA. In conclusion, a maximum percentage of 50% recycled concrete sand can be used in an indoor environment.
Downloads
References
1. Kamrath, P. (2013) Demolition techniques and production of construction and demolition waste (CDW) for recycling. In: Pacheco-Torgal, F., Tam, V.W.Y., Labrincha, J.A., Ding, Y. de Brito, J. (Eds.), Handbook of recycled concrete and demolition waste. Woodhead Publishing Limited, Cambridge, U.K., 186–208. http://dx.doi.org/10.1533/9780857096906.2.186
2. Coelho, A.; de Brito, J. (2013) Conventional demolition versus deconstruction techniques in managing construction and demolition waste (CDW). In: Pacheco-Torgal, F., Tam, V.W.Y., Labrincha, J.A., Ding, Y. de Brito, J. (Eds.), Handbook of recycled concrete and demolition waste. Woodhead Publishing Limited, Cambridge, U.K., 141–183. http://dx.doi.org/10.1533/9780857096906.2.141
3. Jiménez, J.R.; Agrela, F.; Ayuso, J.; López, M. (2011) A comparative study of recycled aggregates from concrete and mixed debris as materials for unbound road sub-base. Mater. Construcc. 61 [302], 289–302. http://dx.doi.org/10.3989/mc.2010.54009
4. Jiménez, J.R. (2013) Recycled aggregates (RAs) for roads. In: Pacheco-Torgal, F., Tam, V.W.Y., Labrincha, J.A., Ding, Y. de Brito, J. (Eds.), Handbook of recycled concrete and demolition waste. Woodhead Publishing Limited, Cambridge, U.K., 351–376. http://dx.doi.org/10.1533/9780857096906.3.351
5. Etxeberria, M.; Vázquez, E.; Marí, A.; Barra. M. (2007) Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete. Cem. Concr. Res. 37, 735–742. http://dx.doi.org/10.1016/j.cemconres.2007.02.002
6. Evangelista, L.; de Brito, J. (2007) Mechanical behaviour of concrete made with fine recycled concrete aggregates. Cem. Concr. Comp. 29, 397–401. http://dx.doi.org/10.1016/j.cemconcomp.2006.12.004
7. Kou, S.C.; Poon, C.S. (2009) Properties of concrete prepared with crushed fine stone, furnace bottom ash and fine recycled aggregate as fine aggregates. Constr. Build. Mater. 23, 2877–2886. http://dx.doi.org/10.1016/j.conbuildmat.2009.02.009
8. Pereira, P.; Evangelista, L.; de Brito, J. (2012) The effect of superplasticizers on the mechanical performance of concrete made with fine recycled concrete aggregates. Cem. Concr. Comp. 34, 1044–1052. http://dx.doi.org/10.1016/j.cemconcomp.2012.06.009
9. Evangelista, L.; de Brito, J. (2010) Durability performance of concrete made with fine recycled concrete aggregates. Cem. Concr. Compos. 32, 9–14. http://dx.doi.org/10.1016/j.cemconcomp.2009.09.005
10. Gonçalves, P.; de Brito, J. (2010) Recycled aggregate concrete (RAC) - comparative analysis of existing specifications. Mag. Con. Res. 62 [5], 339–346. http://dx.doi.org/10.1680/macr.2008.62.5.339
11. Evangelista, L.; de Brito, J. (2014) Concrete with fine recycled aggregates: a review. Europ. J. Envi. Civ. Eng. 18 [2], 129–172. http://dx.doi.org/10.1080/19648189.2013.851038
12. Corinaldesi, V.; Moriconi, G. (2009) Behaviour of cementitious mortars containing different kinds of recycled aggregate. Constr. Build. Mater. 23, 289–294. http://dx.doi.org/10.1016/j.conbuildmat.2007.12.006
13. Corinaldesi, V. (2009) Mechanical behaviour of masonry assemblages manufactured with recycled-aggregate mortars. Cem. Concr. Compos. 31, 505–510. http://dx.doi.org/10.1016/j.cemconcomp.2009.05.003
14. Dapena, E.; Alaejos, P.; Lobet, A.; Pérez, D. (2011) Effect of recycled sand content on characteristics of mortars and concretes. J. Mater. Civ. Eng. 23 [4], 414–422. http://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0000183
15. Vegas, I.; Azkarate, I.; Juarrero, A.; Frías, M. (2009) Design and performance of masonry mortars made with recycled concrete aggregates. Mater. Construcc. 59 [295], 5–18. http://dx.doi.org/10.3989/mc.2009.44207
16. Jiménez, J.R.; Ayuso, J.; López, M.; Fernández, J.M.; de Brito, J. (2013) Use of fine recycled aggregates from ceramic waste in masonry mortar manufacturing. Constr. Build. Mater. 40, 679–690. http://dx.doi.org/10.1016/j.conbuildmat.2012.11.036
17. Martínez, I.; Etxeberria, M.; Pavón, E.; Díaz, N. (2013) A comparative analysis of the properties of recycled and natural aggregate in masonry mortars. Constr. Build. Mater. 49, 384–392. http://dx.doi.org/10.1016/j.conbuildmat.2013.08.049
18. Braga, M.; de Brito, J.; Veiga, R. (2012) Incorporation of fine concrete aggregates in mortars. Constr. Build. Mater. 36, 960–968. http://dx.doi.org/10.1016/j.conbuildmat.2012.06.031
19. Neno, C.; de Brito, J.; Veiga, R. (2014) Using fine recycled concrete aggregate for mortar production. Mater. Res. 17 [1], 168–177. http://dx.doi.org/10.1590/S1516-14392013005000164
20. Ledesma, E.F.; Jiménez, J.R.; Fernández, J.M.; Galvín, A.P.; Agrela, F.; Barbudo, A. (2014) Properties of masonry mortars manufactured with fine recycled concrete aggregates. Constr. Build. Mater. 71, 289–98. http://dx.doi.org/10.1016/j.conbuildmat.2014.08.080
21. Cuenca-Moyano, G.M.; Martín-Morales, M.; Valverde-Palacios, I.; Valverde-Espinosa, I.; Zamorano, M. (2014) Influence of pre-soaked recycled fine aggregate on the properties of masonry mortar. Constr. Build. Mater. 70, 71–79. http://dx.doi.org/10.1016/j.conbuildmat.2014.07.098
22. Ulsen, C.; Kahn, H.; Hawlitschek, G.; Masini, E.A.; Angulo, S.C.; John, V.M. (2013) Production of recycled sand from construction and demolition waste. Constr. Build. Mater. 40, 1168–1173. http://dx.doi.org/10.1016/j.conbuildmat.2012.02.004
23. Rodrigues, F.; Carvalho, M.T.; Evangelista, L.; de Brito, J. (2013) Physical-chemical and mineralogical characterization of fine aggregates from construction and demolition waste recycling plants. J. Clean. Prod. 52, 438–445. http://dx.doi.org/10.1016/j.jclepro.2013.02.023
24. Cartuxo, F.; de Brito, J.; Evangelista, L.; Jiménez, J.R.; Ledesma, E.F. (2015) Rheological behaviour of concrete made with fine recycled concrete aggregates - Influence of the superplasticizers. Constr. Build. Mater. 89, 26–47. http://dx.doi.org/10.1016/j.conbuildmat.2015.03.119
25. Ferreira, L.; de Brito, J.; Barra, M. (2011) Influence of the pre-saturation of recycled coarse concrete aggregates on concrete properties. Mag. Conc. Res. 63 [8], 617–627. http://dx.doi.org/10.1680/macr.2011.63.8.617
26. Pereira, P.; Evangelista, L.; de Brito, J. (2012) The effect of superplasticisers on the workability and compressive strength of concrete made with fine recycled concrete aggregates. Constr. Build. Mater. 28, 722–729. http://dx.doi.org/10.1016/j.conbuildmat.2011.10.050
27. Jiménez, J.R.; Ayuso, J.; Agrela, F.; López, M.; Galvín, A.P. (2012) Utilisation of unbound recycled aggregates from selected CDW in unpaved rural roads. Resour. Conserv. Recy. 58, 88–97. http://dx.doi.org/10.1016/j.resconrec.2011.10.012
28. Jiménez, J.R.; Ayuso, J.; Galvín, A.P.; López, M.; Agrela, F. (2012) Use of mixed recycled aggregates with a low embodied energy from non-selected CDW in unpaved rural roads. Constr. Build. Mater. 34, 34–43. http://dx.doi.org/10.1016/j.conbuildmat.2012.02.042
29. Mefteh, H.; Kebaïli, O.; Oucief, H.; Berredjem, L.; Arabi, N. (2013) Influence of moisture conditioning of recycled aggregates on the properties of fresh and hardened concrete. J. Clean. Prod. 54, 282–288. http://dx.doi.org/10.1016/j.jclepro.2013.05.009
30. Poon, C.S.; Shui, Z.H.; Lam, L.; Fok, H.; Kou, S.C. (2004) Influence of moisture states of natural and recycled aggregates on the slump and compressive strength of concrete. Cem. Concr. Res. 34 [1], 31–36. http://dx.doi.org/10.1016/S0008-8846(03)00186-8
31. Kim, K.; Shin, M.; Cha, S. (2013) Combined effects of recycled aggregate and fly ash towards concrete sustainability. Constr. Build. Mater. 48, 499–507. http://dx.doi.org/10.1016/j.conbuildmat.2013.07.014
32. Kou, S.C.; Poon, C.S. (2013) Long-term mechanical and durability properties of recycled aggregate concrete prepared with the incorporation of fly ash. Cem. Concr. Compos.
33. Katz, A. (2003) Properties of concrete made with recycled aggregate from partially hydrated old concrete. Cem. Concr. Res. 33, 703–711. http://dx.doi.org/10.1016/S0008-8846(02)01033-5
34. Quattrone, M.; Angulo, S.C.; John, V.M. (2014) Energy and CO2 from high performance recycled aggregate production. Resour. Conserv. Recy. 90, 21–33. http://dx.doi.org/10.1016/j.resconrec.2014.06.003
35. Ledesma, E.F.; Jiménez, J.R.; Ayuso, J.; Fernández, J.M.; de Brito, J. (2015) Maximum feasible use of recycled sand from construction and demolition waste for eco-mortar production - Part-I: ceramic masonry waste. J. Clean Prod. 87, 692–706. http://dx.doi.org/10.1016/j.jclepro.2014.10.084. http://dx.doi.org/10.1016/j.jclepro.2014.10.084
36. Corinaldesi, V.; Giuggiolini, M.; Moriconi, G. (2002) Use of rubble from building demolition in mortars. Waste Manage. 22, 893–899. http://dx.doi.org/10.1016/S0956-053X(02)00087-9
37. Silva, J.; de Brito, J.; Veiga, R. (2010) Recycled red-clay ceramic construction and demolition waste for mortars production. J. Mater. Civ. Eng. 22 [3], 236–244. http://dx.doi.org/10.1061/(ASCE)0899-1561(2010)22:3(236)
38. Aye, T.; Oguchi, C.T. (2001) Resistance of plain and blended cement mortar exposed to severe sulphate attacks. Constr. Build. Mater. 25, 2988–2996. http://dx.doi.org/10.1016/j.conbuildmat.2010.11.106
39. Sahmaran, M.; Kasap, O.; Duru, K.; Yaman, I.O. (2007) Effects of mix composition and water–cement ratio on the sulfate resistance of blended cements. Cem. Concr. Compos. 29, 159–67. http://dx.doi.org/10.1016/j.cemconcomp.2006.11.007
40. Chen, J.; Jiang, M. (2009) Long-term evolution of delayed ettringite and gypsum in Portland cement mortars under sulphate erosion. Constr. Build. Mater. 23, 812–816. http://dx.doi.org/10.1016/j.conbuildmat.2008.03.002
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.