Formation and early hydration characteristics of C2.75B1.25A3$ in binary system of C2.75B1.25A3$-C2S


  • Shoude Wang Shandong Provincial Key Lab. of Preparation and Measurement of Building Materials, University of Jinan
  • Yongbo Huang Shandong Provincial Key Lab. of Preparation and Measurement of Building Materials, University of Jinan
  • Chenchen Gong Shandong Provincial Key Lab. of Preparation and Measurement of Building Materials, University of Jinan
  • Xinghua Fu Shandong Provincial Key Lab. of Preparation and Measurement of Building Materials, University of Jinan
  • Lingchao Lu Shandong Provincial Key Lab. of Preparation and Measurement of Building Materials, University of Jinan



Belite, Barium calcium suphoaluminate, Formation, Hydration, Early mechanical strength


C2.75B1.25A3$ (2.75CaO•1.25BaO• 3Al2O3• SO3) is one of the important minerals and it govern-directly the early-strength of belite-barium calcium sulphoaluminate cement. In this paper a binary system C2.75B1.25A3$-C2S is selected to investigate the formation of C2.75B1.25A3$. In the range of 1100 °C–1200 °C, the earlier formed C2S hinders the formation of C2.75B1.25A3$. On the contrary, when the temperature is in the range of 1200 °C–1350 °C, the initially formed C2S could provide a surface for the nucleation of C2.75B1.25A3$ and cut down the potential barrier (?Gk*) for the heterogeneous nucleation of C2.75B1.25A3$, which contributes to its formation. Moreover, at 1350 °C, the large amount of previously formed C2S benefits the extent of formation of C2.75B1.25A3$. The possible reason was that it could prevent sulfur evaporation. In early hydration age, AFm and AFt originating from C2.75B1.25A3$ hydration are found within 2 h and 12 h under 95% RH at 1 °C, respectively, whereas C2S is unhydrated at this moment.


Download data is not yet available.


1. Schneider M.; Romer M.; Tschudin M.; Bolio H. (2011) Sustainable cement production-present and future. Cem. Concr. Res. 41 [7], 642-650.

2. Kacimi L.; Simon M. A. ; Ghomaric A.; Derrichea Z. (2006) Reduction of clinkerization temperature by using phosphogypsum. J. Hazard. Mater. 137 [1], 129-137. PMid:16533556

3. Worrell E.; Price L.; Martin N.; Hendriks C.; Meida L.O. (2001) Carbon dioxide emissions from the global cement industry. Annu. Rev. Energy Env. 26, 303-329. .

4. Benhelal E.; Zahedi G.; Shamsaei E.; Bahadori A. (2013) Global strategies and potentials to curb CO2 emissions in cement industry. J. Clean. Prod. 51 [15], 142-161.

5. Morsli K.; De la Torre A.G.; Zahir M.; Aranda M.A. (2007) Mineralogical phase analysis of alkali and sulfate bearing belite rich laboratory clinkers. Cem. Concr. Res. 37 [5], 639-646.

6. García-Díaz I.; Palomo J.G.; Puertas F. (2011) Belite cements obtained from ceramic wastes and the mineral pair CaF2/CaSO4. Cem. Concr. Compos. 33 [10], 1063-1070.

7. Y.T. Zhao; L.C. Lu; S.D. Wang; C.C. Gong; Y.B. Huang. (2013) Modification of dicalcium silicates phase composition by BaO, SO3 and MgO, J. Inorg. Organomet. Polym. Mater. 23 [4], 930-936.

8. Yang L.; Yan Y.; Hu Z.H.; Xie X.L. (2013) Utilization of phosphate fertilizer industry waste for belite-ferroaluminate cement production. Constr. Build. Mater. 38, 8-13.

9. Chen Y.L. ; Lin C.J. ; Ko M.S. ; Lai Y.C. ; Chang J.E. (2011) Characterization of mortars from belite-rich clinkers produced from inorganic wastes. Cem. Concr. Compos. 33 [2], 261-266.

10. Ali M.B.; Saidur R.; Hossain M.S. (2011) A review on emission analysis in cement industries. Renew. Sust. Energ. Rev. 15, 2252-261.

11. IEA(International Energy Agency), WBCSD(World Business Council for Sustainable Development).Cement technology roadmap 2009: carbon emissions reductions up to 2050. (2009)

12. Chen Y.L.; Shih P.H.; Chiang L.C.; Chang Y.K.; Lu H.C.; Chang J.E. (2009) The influence of heavy metals on the polymorphs of dicalcium silicate in the belite-rich clinkers produced from electroplating sludge. J. Hazard. Mater. 170 [1], 443-448. PMid:19464111

13. Chen I.A.; Juenger M.C.G. (2011) Synthesis and hydration of calcium sulphoaluminate-belite cements with varied phase compositions. J. Mater. Sci. 46 [8], 2568-2577.

14. Lu L.C.; Zhao P.Q.; Wang S.D.; Chen Y.M. (2011) Effect of Calcium carbide residue and high silicon limestone on the synthesis of belite-barium calcium sulphoaluminate cement. J. Inorg. Organomet. Polym. 21 [4], 900-905.

15. Lacobescu R.I. ; Koumpouri D. ; Pontikes Y. ; Saban R. ; Angelopoulos G.N. (2011) Valorisation of electric arc furnace steel slag as raw material for low energy belite cements. J. Hazard. Mater. 196 [30], 287-294. PMid:21944704

16. Pimraksa K.; Hanjitsuwan S.; Chindaprasirt P. (2009) Synthesis of belite cement from lignite fly ash. Ceram. Int. 35 [6], 2415-2425.

17. Kacimi L.; Cyr M.; Clastres P. (2010) Synthesis of ±2 -C2S cement from fly-ash using the hydrothermal method at low temperature and atmospheric pressure. J. Hazard. Mater. 181 [1-3], 593-601. PMid:20541318

18. Sharp J.H.; Lawrence C.D.; Yang R. (1999) Calcium sulphoaluminate cements-low energy cements, special cements or what? Adv. Cem. Res. 11 [1], 3-13.

19. Kacimi L.; Simon M.A.; Salem S.; Ghomari A.; Derriche Z. (2009) Synthesis of belite cement clinker of high hydraulic reactivity. Cem. Concr. Res. 39 [7], 559-565.

20. Stephane B.; Celine C.D.C.; Patrick L.B.; Damidot D. (2011) Influence of a thermal cycle at early age on the hydration of calcium sulphoaluminate cements with variable gypsum contents. Cem. Concr. Res. 41 [2], 149-160.

21. Pelletier C.L.; Winnefeld F.; Lothenbach B.; Saout G. L.; Jörg Muller C.; Famy C. (2011) Influence of the calcium sulphate source on the hydration mechanism of Portland cement-calcium sulphoaluminate clinkercalcium sulphate binders. Cem. Concr. Compos. 33 [5], 551-561.

22. Liu X.C.; Li Y.J.; Zhang N. (2002) Influence of MgO on the formation of Ca3SiO5 and 3CaO∑3Al2O3∑CaSO4 minerals in alite-sulphoaluminate cement. Cem. Concr. Res. 32 [7], 1125- 1129.

23. Martin-Sedeno M.C.; Cuberos A.J.M.; De la Torre A.G. ; ¡lvarez-Pinazo G.; OrdÛnez L.M.; Gateshki M.; Aranda M.A.G. (2010) Aluminum-rich belite sulfoaluminate cements: Clinkering and early age hydration. Cem. Concr. Res. 40 [3], 359-369.

24. Cheng X.; Chang J.; Lu L.C.; Liu F.T.; Teng B. (2000) Study of Ba-bearing calcium sulphoaluminate minerals and cement. Cem. Concr. Res. 30 [1], 77-81.

25. Cheng X.; Chang J.; Lu L.C.; Liu F.T.; Teng B. (2004) Study on the hydration of Ba-bearing calcium sulphoaluminate in the presence of gypsum. Cem. Concr. Res. 34 [11], 2009-2013.

26. Lu L.C.; Wang H.; Wang S.D.; Guo X.Y. (2010) Influence of MgO on sintering and property of belite-barium calcium sulphoaluminate cement. J. Build. Mater. 13 281-285.

27. Lu L.C.; Zhang W.W.; Xuan H.Z.; Cheng X. (2008) Calcination condition of belite-calcium barium sulphoaluminate cement and its performance. J. Chin. Ceram. Soc. 36 165-169.

28. Zhang W.W.; Lu L.C.; Cui Y.J.; Chang J.; Cheng X. (2007) Microstructure and performances of belite-calcium barium sulphoaluminate cement. J. Chin. Ceram. Soc. 35 467-471.

29. Zhao P.Q.; Lu L.C.; Wang S.D. (2011) Influence of highsilicon limestone on mineral structure and performance of belite-barium calcium sulphoaluminate clinker. Adv. Mater. Res. 168-170, 460-465.

30. Wang Z.; Ba H.J.; Li J.H.; Zhang Y.Z. (2005) Effect of solid solubility of hetero-iron properties of high-belite cement, J. Wuhan Univ. Tech. 27, 33-35.

31. Johoson Q.; Zhou R.S. (1998) Checking and estimating RIR values, International Centre for Diffraction Data 2000, Advances in X-ray Analysis, 42, 233-239.

32. Ottner F.; Gier S.; Kuderna M.; Schwaighofer B. (2000) Results of an inter-laboratory comparison of methods for quantitative clay analysis, Applied Clay Science, 17 [5-6], 223-243.

33. Huang Y.B.; Wang S.D.; Gong C.C.; Zhao Y.T.; Lu L.C. (2013) Study on isothermal kinetics of calcium barium sulphoaluminate mineral, J. Inorg. Organomet. Polym. Mater. 23, 1172-11 76.

34. Rodrigues F.A. (2003) Synthesis of chemically and structurally modified dicalcium silicate, Cem. Concr. Res. 33 [6], 823-827.

35. Wang S.D.; Huang Y.B.; Gong C.C.; Lu L.C.; Cheng X. (2014) Formation mechanism of barium calcium sulphoaluminate mineral, Adv. Cem. Res. 26 [3], 169-176.

36. Chang J.; Lu L.C.; Liu F.T.; Teng B.; Cheng X. (1999) Study on Ba-bearing calcium sulphoaluminate cement mineral, J. Chin. Ceram. Soc. 27, 644-650.

37. Bhuiyan M.I.H.; Mavinic D.S.; Beckie R.D. (2008) Nucleation and growth kinetics of struvite in a fluidized bed reactor, J. Cryst. Growth. 310 [6], 1187-1194.

38. Li X.R.; Zhang Y.; Shen X.D.; Wang Q.Q.; Pan Z.G. (2014) Kinetics of calcium sulphoaluminate formation from tricalcium aluminate, calcium sulfate and calcium oxide, Cem. Concr. Res. 55, 79-87.



How to Cite

Wang, S., Huang, Y., Gong, C., Fu, X., & Lu, L. (2016). Formation and early hydration characteristics of C2.75B1.25A3$ in binary system of C2.75B1.25A3$-C2S. Materiales De Construcción, 66(323), e091.



Research Articles

Most read articles by the same author(s)