The use of a volcanic material as filler in self-compacting concrete production for lower strength applications




Self-compacting concrete, Filler, Workability, Compressive strength, Permeability


This study evaluates the use of large amounts of fine powders (fillers) derived from a Colombian volcanic material into the production of self-compacting concrete (SCC) for lower strength applications. The effects on SCC properties were studied with the incorporation of up to 50% of volcanic material of Tolima (MVT) as a partial substitute of the total weight of Portland cement. The workability was determined through slump flow, V-funnel, and L-box test. The compressive strength results were analyzed statistically by MINITAB. These demonstrated that 30% (by total weight of cementitious material) was the maximum allowable percentage of MVT to be used in the production of SCCs. Based on this, mechanical and permeability properties of SCC MVT 30% were evaluated at 28, 90 y 360 curing days. SCC MVT 30% exhibited compressive strength of 21 and 27 MPa after 28 and 360 days of curing, respectively.


Download data is not yet available.


Kosmatka, S.H.; Kerkhoff, B.; Panarese, W.C.; Tanesi, J. (2004) Dise-o y Control de Mezclas de Concreto. Director (Primera Ed). Skokie, Illinois: Portland Cement Association.

Rodríguez Viacava, I.; Aguado de Cea, A.; Rodríguez de Sensale, G. (2012) Self-compacting concrete of medium characteristic strength. Constr. Build. Mater. 30, 776-782.

Valdez, P.; Barragán, B.; Girbes, I.; Shuttleworth, N.; Cockburn, A. (2010) Uso de residuos de la industria del mármol como filler para la producción de hormigones autocompactantes. Mater. Construcc. 61 [301], 61-76.

Felekoglu, B. (2007) Utilisation of high volumes of limestone quarry wastes in concrete industry (self-compacting concrete case). Resour. Conserv. Recy. 51 [4], 770-791.

Nagaratnam, B.H.; Rahman, M.E.; Mirasa, A.K.; Mannan, M.A. (2014) Workability of self-compacting concrete using blended waste materials. Adv. Mater. Res. 1043, 273-277.

Massazza, F. (1993) Pozzolanic cements. Cem. Concr. Compos. 15 [4], 185-214.

Kirk, S.; Zuleta, R. (2000) A study of the volcanic ash originating from Mount Pinatubo, Philippines. Public Works. Philippines.

Hossain, K.; Lachemi, M. (2010) Fresh, mechanical, and durability characteristics of self-consolidating concrete incorporating volcanic ash. J. Mater. Civil Eng. 22 [7], 651-657.

Güneyisi, E.; Geso_lu, M.; Al-Rawi, S.; Mermerda_, K. (2013) Effect of volcanic pumice powder on the fresh properties of self-compacting concretes with and without silica fume. Mater. Struc. 47 [11], 1857-1865.

Celik, K.; Jackson, M.D.; Mancio, M.; Meral, C.; Emwas, A.-H.; Mehta, P.K.; Monteiro, P.J.M. (2014) High-volume natural volcanic pozzolan and limestone powder as partial replacements for portland cement in self-compacting and sustainable concrete. Cem. Concr. Compos. 45, 136-147.

American society for testing and materials, ASTM C494/C494M-15a Standard specification for chemical admixtures for concrete. West Conshohocken, PA: ASTM, 2015.

Hossain, K. (2005) Volcanic ash and pumice as cement additives: pozzolanic, alkali-silica reaction and autoclave expansion characteristics. Cem. Concr. Res. 35 [6], 1141-1144.

Burgos, D.M.; Cardona, L.M.; Delvasto, S. (2014) Estudio de dos materiales volcánicos y efecto del tipo de molienda en su reactividad. Rev. Ing. Constr. 29 [2], 159-174.

Burgos, D.M.; Cardona Ramírez, L.M.; Gordillo Suárez, M.; Delvasto Arjona, S. (2015) Evaluation and pozzolanic effects of the puracé volcanic material. Rev. EIA. Esc. Ing. Antioq. [23], 83-93.

Yahia, A.; Tanimura, M.; Shimoyama, Y. (2005) Rheological properties of highly flowable mortar containing limestone filler-effect of powder content and W/C ratio. Cem. Concr. Res. 35 [3], 532-539.

The European guidelines for self-compacting concrete. Farnham, Reino Unido, 2005.

American society for testing and materials, ASTM C39/C39M-12 Standard test method for compressive strength of cylindrical concrete specimens. West Conshohocken, PA: ASTM, 2012.

American society for testing and materials, ASTM C496/C496 M-11 Standard test method for splitting tensile strength of cylindrical concrete specimens. West Conshohocken, PA: ASTM, 2011.

American society for testing and materials, ASTM C78/C78 M-15a Standard test method for flexural strength of concrete (using simple beam with third-point loading). West Conshohocken, PA: ASTM, 2015.

American society for testing and materials, ASTM C642/C642-13 Standard test method for density, absorption, and voids in hardened concrete. West Conshohocken, PA: ASTM, 2013.

Swiss federal laboratories for materials science and technologies (1989). EMPA - SIA 162/1 Test No. 5 - Water conductivity. Swiss federal laboratories for materials science and technologies: Zurich, Suiza.

Uysal, M.; Yilmaz, K. (2011) Effect of mineral admixtures on properties of self-compacting concrete. Cem. Concr. Compos. 33 [7], 771-776.

Bonavetti, V.L.; Rahhal, V.F. (2006) Interacción de Adiciones Minerales en Pastas de Cemento. Rev. Constr. 5 [2], 33-41.

Ramezanianpour, A.A.; Ghiasvand, E.; Nickseresht, I.; Mahdikhani, M.; Moodi, F. (2009) Influence of various amounts of limestone powder on performance of Portland limestone cement concretes. Cem. Concr. Compos. 31 [10], 715- 720.

Dogan, U.A.; Ozkul, M.H. (2015) The effect of cement type on long-term transport properties of self-compacting concretes. Constr. Build. Mater. 96, 641-647.



How to Cite

Burgos, D., Guzmán, A., Hossain, K. M., & Delvasto, S. (2017). The use of a volcanic material as filler in self-compacting concrete production for lower strength applications. Materiales De Construcción, 67(325), e111.



Research Articles

Most read articles by the same author(s)