Properties of geopolymer binders prepared from milled pond ash
DOI:
https://doi.org/10.3989/mc.2017.07716Keywords:
Pond ash, Grinding, Alkali-activated cement, Compressive strength, MicrostructureAbstract
Alkali-activated materials were prepared from pond ash from the Darkhan city (Mongolia) thermal power station. This ash contains about 60 wt % X-ray amorphous material in addition to quartz, mullite, hematite and magnesioferrite, and presents significant storage problems since it is accumulating in large amounts and is a hazardous waste, containing 90–100 ppm of the heavy metals As, Pb and Cr, and about 800 ppm Sr. Alkali-activated materials synthesized from the as-received pond ash achieved compressive strengths of only 3.25 MPa. Reduction of the particle size by mechanical milling for up to 30 min progressively increases the compressive strength of the resulting alkali-activated geopolymer up to 15.4 MPa. Leaching tests indicate that the combination of milling and alkali treatment does not cause the release of the hazardous heavy metals from the product, making it suitable for construction applications.
Downloads
References
Blissett, R.S.; Rowson, N.A. (2012) A review of the multicomponent utilisation of coal fly ash. Fuel, 97, 1-23. https://doi.org/10.1016/j.fuel.2012.03.024
Jha, V.K.; Matsuda, M.; Miyake, M. (2008) Resource recovery from coal fly ash waste: an overview study. J. Ceram. Soc. Japan. 116, 167-175. https://doi.org/10.2109/jcersj2.116.167
Ahmaruzzaman, M. (2010) A review on the utilization of fly ash. Progress. Energy. Combust. Sci. 36, 327-363. https://doi.org/10.1016/j.pecs.2009.11.003
Zacco, A.; Borgese, L.; Gianoncelli, A.; Struis, R.P.W.J.; Depero, L.E.; Bontempi, E. (2014) Review of fly ash inertisation treatments and recycling. Environment. Chem. Lett. 12, 153-175. https://doi.org/10.1007/s10311-014-0454-6
Erol, M.; Genc, A.; Ovecoglu, M.L.; Yucelen, E.; Kucukbayrak, S.; Taptok, Y. (2000) Characterization of a glass-ceramic produced from thermal power plant fly ashes. J. Eur. Ceram. Soc. 20, 2209-2214. https://doi.org/10.1016/S0955-2219(00)00099-6
Provis, J.L.; van Deventer, J.S.J., Ed. (2014) Alkali Activated Materials, State-of-the-Art Report. RILEM TC 224-AAM, London, Springer, 388p, 2014. https://doi.org/10.1007/978-94-007-7672-2
Gourley, J.T. (2014) Geopolymers in Australia. J. Aus. Ceram. Soc. 50, 102 110. http://www.austceram.com/JAC-2014-1/ACS-Journal-2014-v1-102
Temuujin, J.; Minjigmaa, A.; Bayarzul, U.; Zolzaya, Ts.; Davaabal, B.; Amgalan, J. (2015) Fundamentals of geopolymers and related alkali activated materials. Mater. Sci. Forum, 803, 144-147. https://doi.org/10.4028/www.scientific.net/MSF.803.144
Chindaprasirt, P.; Jaturapitakkul, C.; Chalee, W.; Rattanasak, U. (2009) Comparative study on the characteristics of fly ash and bottom ash geopolymers. Waste Manage, 29, 539-543. https://doi.org/10.1016/j.wasman.2008.06.023 PMid:18715775
Chen, C.; Li, Q.; Shen, L.; Zhai, J. (2012) Feasibility of manufacturing geopolymer bricks using circulating fluidized bed combustion bottom ash. Environment. Techn. 33, 1313-1321. https://doi.org/10.1080/09593330.2011.626797 PMid:22856304
Lancellotti, I.; Ponzoni, C.; Barbieri, L.; Leonelli, C. (2013) Alkali activation processes for incinerator residues management. Waste Manage. 33, 1740-1749. https://doi.org/10.1016/j.wasman.2013.04.013 PMid:23756039
Tzanakos, K.; Mimilidou, A.; Anastasiadou, K.; Stratakis, A.; Gidarakos, E. (2014) Solidification /stabilization of ash from medical waste incineration into geopolymers. Waste Manage. 34, 1823-1828. https://doi.org/10.1016/j.wasman.2014.03.021 PMid:24785364
McCarthy, M.J.; Jones, M.R.; Zheng, L.; Robl, T.L.; Groppo, J.G. (2013) Characterising long-term wet-stored fly ash following carbon and particle size separation. Fuel, 111, 430-441. https://doi.org/10.1016/j.fuel.2013.02.048
Lee, S.; Jou, H.T.; Chon, C.M.; Kang, N.H.; Cho, S.B. (2013) Developing and assessing geopolymers from Seochun pond ash with a range of compositional ratios. J. Korean Ceram. Soc. 50, 134-141. https://doi.org/10.4191/kcers.2013.50.2.134
Lee, S.; Jou, H.T.; van Riessen, A.; Rickard, W.D.A.; Chon, C.M.; Kang, N.H. (2014) Three-dimensional quantification of pore structure in coal ash-based geopolymer using conventional electron tomography. Construct. Build. Mater. 52, 221-226. https://doi.org/10.1016/j.conbuildmat.2013.10.072
Ranganath, V.R.; Bhattacharjee, B.; Krishnamoorth, S. (1998) Influence of size fraction of ponded ash on its pozzolanic activity. Cement. Concrete Res. 28, 749-761, https://doi.org/10.1016/S0008-8846(98)00036-2
Lee, S.J.; Cho, H.C.; Kwon, J.H. (2012) Beneficiation of coal pond ash by physical separation techniques. J. Environment. Manage. 104, 77-84. https://doi.org/10.1016/j.jenvman.2012.03.034 PMid:22484657
Bayarzul, U.; Temuujin, J.; Minjigmaa, A.; Bekhbaatar, A.; Battsetseg, B.; Mapiravana, J.; Dlamini, M. (2014) Comparative study of morphology of various fly ashes and pond ashes from different thermal power stations in Mongolia. Proceed. Mongol. Acad. Sci. 54, 5-10. https://doi.org/10.5564/pmas.v54i4.621
Temuujin, J.; Williams, R.P.; van Riessen, A. (2009) Effect of mechanical activation of fly ash on the properties of geopolymer cured at ambient temperature. J. Mater. Process. Techn. 209, 5276-5280. https://doi.org/10.1016/j.jmatprotec.2009.03.016
Kumar, R.; Kumar, S.; Mehrotra, S.P. (2007) Towards sustainable solutions for fly ash through mechanical activation. Res. Conservation. Recycl. 52, 157-179. https://doi.org/10.1016/j.resconrec.2007.06.007
Mucsi, G.; Kumar, S.; Csoke, B.; Kumar, R.; Molnar, Z.; Racz, A.; M·dai, F.; Debreczeni, A. (2015) Control of geopolymer properties by grinding of land filled fly ash. Inter. J. Miner. Process. 143, 50-58. https://doi.org/10.1016/j.minpro.2015.08.010
Nikolic, V.; Komljenovic, M.; Marjanovic, N.; Bascarevic, Z.; Petrovic, R. (2014) Lead immobilization by geopolymers based on mechanically activated fly ash. Ceram. Inter. 40, 8479- 8488. https://doi.org/10.1016/j.ceramint.2014.01.059
Temuujin, J.; Minjigmaa, A.; Davaabal, B.; Bayarzul, U.; Ankhtuya, A.; Jadambaa, Ts.; MacKenzie, K.J.D. (2014) Utilization of radioactive high-calcium Mongolian flyash for the preparation of alkali-activated geopolymers for safe use as construction materials. Ceram. Inter. 40, 16475-16483. https://doi.org/10.1016/j.ceramint.2014.07.157
Hardjito, D. (2005) Studies on Fly Ash-Based Geopolymer Concrete. PhD thesis, Curtin University of Technology, Australia, 2005.
Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquerol, J.; Siemieniewska, T. (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603-619. https://doi.org/10.1351/pac198557040603
Ruscher, C.H.; Mielcarek, E.M.; Wongpa, J.; Jaturapitakkul, C.; Jirasit, F.; Lohaus, L. (2010) Silicate, aluminosilicate and calcium silicate gels for building materials: chemical and mechanical properties during ageing. Eur. J. Miner. 23, 111-124. https://doi.org/10.1127/0935-1221/2010/0022-2070
Provis, J.L. (2009) Immobilization of toxic wastes in geopolymers. In Geopolymers Structure, Processing, Properties, Industrial Applications. Provis JL, van Deventer JSJ (Editors.) Woodhead, Cambridge, 423-442.
El-Eswed, B.I.; Yousef, R.I.; Alshaaer, M.; Hamadneh, I.; Al-Gharabli.; S.I, Khalili, F. (2015) Stabilization/ solidification of heavy metals in kaolin/zeolite based geopolymers. Inter. J. Miner. Proc. 137, 34-42. https://doi.org/10.1016/j.minpro.2015.03.002
Blackford, M.G.; Hanna, J.V.; Pike, K.J.; Vance, E.R.; Perera, D.S. (2007) Transmission Electron Microscopy and Nuclear Magnetic Resonance Studies of Geopolymers for Radioactive Waste Immobilization. J. Am. Ceram. Soc., 90 [4], 1193-1199. https://doi.org/10.1111/j.1551-2916.2007.01532.x
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read here the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.