Small-sized reverberation chamber for the measurement of sound absorption

Authors

DOI:

https://doi.org/10.3989/mc.2017.07316

Keywords:

Acoustic Properties, Sound Absorption Coefficient, Characterisation

Abstract


This paper presents the design, construction, calibration and automation of a reverberation chamber for small samples. A balance has been sought between reducing sample size, to reduce the manufacturing costs of materials, and finding the appropriate volume of the chamber, to obtain reliable values at high and mid frequencies. The small-sized reverberation chamber, that was built, has a volume of 1.12 m3 and allows for the testing of samples of 0.3 m2. By using diffusers, to improve the diffusion degree, and automating measurements, we were able to improve the reliability of the results, thus reducing test errors. Several comparison studies of the measurements of the small-sized reverberation chamber and the standardised reverberation chamber are shown, and a good degree of adjustment can be seen between them, within the range of valid frequencies. This paper presents a small laboratory for comparing samples and making decisions before the manufacturing of larger sizes.

Downloads

Download data is not yet available.

References

EN ISO 354:2003. Acoustics - Measurement of sound absorption in a reverberation room. TC: ISO/TC 43/SC 2, ICS: 91.120.20.

ASTM C423-09a Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberation Room Method. Developed by Subcommittee: E33.01.

Del Rey, R.; Alba, J.; Ramis, J.; Sanchis, V.J. (2011). New absorbent acoustic materials from plastic bottle remnants. Mater. Construcc. 61 [304], 547-558. https://doi.org/10.3989/mc.2011.59610

Maderuelo, R.; Nadal, A.V.; Crespo, J.E.; Parres, F. (2012). A novel sound absorber with recycled fibers coming from end of life tires (ELTs). Applied Acoustics. 73, 402-408. https://doi.org/10.1016/j.apacoust.2011.12.001

Del Rey, R.; Alba, J.; Arenas, J.P.; Sanchis, V.J. (2012). An empirical modelling of porous sound absorbing materials made of recycled foam. Appl. Acoust.. 73, 604-609. https://doi.org/10.1016/j.apacoust.2011.12.009

Fatima, S.; Mohanty, A.R. (2011). Acoustical and fire-retardant properties of jute composite materials. Appl. Acoust.. 72, 108-114. https://doi.org/10.1016/j.apacoust.2010.10.005

Ramis, J.; Alba, J.; Del Rey, R.; Escuder, E.; Sanchis, V.J. (2010). Nuevos materiales absorbentes acústicos basados en fibra de kenaf. Mater. Construcc. 60 [299], 133-143. https://doi.org/10.3989/mc.2010.50809

Ramis, J.; Del Rey, R.; Alba, J.; Godinho, L.; Carbajo, J. (2014). A model for acoustic absorbent materials derived from coconut fiber. Mater. Construcc. 64 [313]. https://doi.org/10.3989/mc.2014.00513

Díaz, C.; Jimenez, M.; Navacerrada, M.Á. Pedrero, A. (2012). Propiedades acústicas de los paneles de carrizo"" Acoustic properties of reed panels. Mater. Construcc. 6 [305] 55-66. https://doi.org/10.3989/mc.2010.60510

Arenas, J.P.; Rebolledo, J.; Del Rey, R.; Alba, J. (2014). Sound Absorption Properties of Unbleached Cellulose Loose-Fill Insulation Material. BioResources. 9 [4] 6227-6240. http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_09_4_6227_Arenas_Sound_Absrption_Properties_Cellulose/3020 https://doi.org/10.15376/biores.9.4.6227-6240

Bulent, E.; Aykut, K.; Haluk, K. (2012). Improving Sound Absorption Property of Polyurethane Foams by Adding Tea-Leaf Fibers. Arch. Acoust. 37 [4] 515-520.

Arenas, J.P.; Crocker, M.J. (2010). Recent trends in porous sound absorbing materials for noise control. Sound Vib.. 44 [7] 13-17. http://www.sandv.com/downloads/1007croc.pdf

ISO 10534-2:1998. Acoustics -- Determination of sound absorption coefficient and impedance in impedance tubes -- Part 2: Transfer-function method. TC: ISO/TC 43/SC 2 ICS: 17.140.01.

ASTM E1050-10. Standard Test Method for Impedance and Absorption of Acoustical Materials Using A Tube, Two Microphones and A Digital Frequency Analysis System. . Developed by Subcommittee: E33.01

GMW14177 3rd Edition, October 1, 2014 Random Incidence Sound Absorption Evaluation Test Procedure. Published by GMW - General Motors Worldwide.

Hernández, D.; Liu, E.J.; Huang, J.H.; Liu, Y.C. (2015). Design and Construction of a Small Reverberation Chamber Applied to Absorption and Scattering Acoustic Measurements. Advanced Materials Research. 1077. 197–202.

David T. Bradley, Markus Müller-Trapet, Jacob Adelgren and Michael Vorländer. (2014). Effect of boundary diffusers in a reverberation chamber: Standardized diffuse field quantifiers. J. Acoust. Soc. Am. 135. https://doi.org/10.1121/1.4866291

Pacheco Bastos, L.; Da Silva Vieira de Melo, G.; Sure Soeiro, N. (2012). Panels Manufactured from Vegetable Fibers: An Alternative Approach for Controlling Noises in Indoor Environments. Advances in acoustic and vibration. 2012, Article ID 698737

LIFE09 ENV/ES/000461 (2011). Demonstrative solutions to reduce noise pollution in industrial areas, using finishing technologies in textile materials. http://noisefreetex.aitex. net- (June 21, 2016)

WOOL4BUILD. Improved isolation material for ecobuilding based on natural wool http://www.wool4build.eu - (June 21, 2016)

D49-1977. PSA PEUGEOT-CITROËN. Methodes d'Essai Matieres. Materiaux fibreux et Alveolaires. Absorption Acoustique en champs diffuse.

1848 495.6. Technische liefervorschrift. Technical delivery. TL Faserviles BMW für Schalli. Specs Fibre Flee Soundins. December 2013.

Skålevik, M. (2011). Schroeder Frequency revisited. International Congress Forum Acustikum – Aalborg, Denmark – 2011.

Published

2017-12-30

How to Cite

del Rey, R., Alba, J., Bertó, L., & Gregori, A. (2017). Small-sized reverberation chamber for the measurement of sound absorption. Materiales De Construcción, 67(328), e139. https://doi.org/10.3989/mc.2017.07316

Issue

Section

Research Articles