A composite cement of high magnesium sulphate resistance


  • A. Allahverdi Research laboratory of Inorganic Chemical Process Technologies, School of Chemical Engineering, Iran University of Science and Technology - Cement Research Center, Iran University of Science and Technology https://orcid.org/0000-0002-8988-9226
  • M. Akhondi Research laboratory of Inorganic Chemical Process Technologies, School of Chemical Engineering, Iran University of Science and Technology https://orcid.org/0000-0001-6723-6024
  • M. Mahinroosta Research laboratory of Inorganic Chemical Process Technologies, School of Chemical Engineering, Iran University of Science and Technology https://orcid.org/0000-0001-9709-2949




Composite, Blended cement, Sulphate-resistant cement, Sulphate attack, Compressive strength


This study investigates the magnesium sulphate resistance of chemically activated phosphorus slag-based composite cement (CAPSCC). Enough mortar specimens were prepared from phosphorus slag (80 wt.%), type II Portland cement (14 wt.%), and compound chemical activator (6 wt.%) and were exposed to 5% magnesium sulphate solution after being cured. Mortar specimens of both type II and V Portland cements (PC2 and PC5) were also prepared and used for comparison purpose. According to the test results, after 12 months of exposure, PC2, PC5 and CAPSCC exhibited 43.5, 35.2 and 25.2% reduction in compressive strength, 0.136, 0.110, and 0.026% expansion in length, and 0.91, 2.2, and 1.78% change in weight, respectively. Complementary studies by X-ray diffractometry and scanning electron microscopy revealed that CAPSCC has a very low potential for the formation of sulphate attack products, especially ettringite. The results confirm a high magnesium sulphate resistance for CAPSCC compared to PC2 and PC5.


Download data is not yet available.


Hossain, M.M.; Karim, M.R.; Hossain, M.K.; Islam, M.N.; Zain M.F.M. (2015) Durability of mortar and concrete containing alkali-activated binder with pozzolans: A review. Constr. Build. Mater. 93, 95–109. https://doi.org/10.1016/j.conbuildmat.2015.05.094

Komljenovic, M.; Ba?carevic, Z.; Marjanovic, N.; Nikolic, V. (2013) External sulfate attack on alkali-activated slag. Constr. Build. Mater. 49, 31–39. https://doi.org/10.1016/j.conbuildmat.2013.08.013

Ramyar, K.; Inan, G. (2007) Sodium sulfate attack on plain and blended cements. Build. Environ. 42, 1368–1372. https://doi.org/10.1016/j.buildenv.2005.11.015

Aydın, S.; Yazıcı, H.; Yigiter, H.; Baradan, B. (2007) Sulfuric acid resistance of high-volume fly ash concrete. Build. Environ. 42 [2], 717–721. https://doi.org/10.1016/j.buildenv.2005.10.024

Girardi, F.; Vaona, W.; Di Maggio, R. (2010) Resistance of different types of concretes to cyclic sulfuric acid and sodium sulfate attack. Cem. Concr. Compos. 32, 595–602. https://doi.org/10.1016/j.cemconcomp.2010.07.002

Bassuoni, M.T.; Nehdi, M.L. (2007) Resistance of self-consolidating concrete to sulfuric acid attack with consecutive pH reduction. Cem. Concr. Res. 37 [7], 1070–1084. https://doi.org/10.1016/j.cemconres.2007.04.014

Bakharev, T.; Sanjayan, J.G.; Cheng, Y.B. (2002) Sulfate attack on alkali-activated slag concrete. Cem. Concr. Res. 32 [2], 211–216. https://doi.org/10.1016/S0008-8846(01)00659-7

Xu, A.; Shayan, A.; Baburamani, P. (1998) Test methods for sulfate resistance of concrete and mechanism of sulphate attack. ARRB transport research Ltd.

Naik, N.N.; Jupe, A.C.; Stock, S.R.; Wilkinson, A.P.; Lee, P.L.; Kurtis, K.E. (2006) Multi-mode X-ray study of sodium and magnesium sulfate attack on Portland cement paste. JCPDS-International Centre for Diffraction Data, 63–72.

Veiga, K.K.; Gastaldini, A.L.G. (2012) Sulfate attack on a white Portland cement with activated slag. Constr. Build. Mater. 34, 494–503. https://doi.org/10.1016/j.conbuildmat.2012.02.090

Hekal, E.E.; Kishar, E.; Mostafa, H. (2002) Magnesium sulfate attack on hardened blended cement pastes under different circumstances. Cem. Concr. Res. 32 [9], 1421– 1427. https://doi.org/10.1016/S0008-8846(02)00801-3

Park, Y.S.; Suh, J.K.; Lee, J.H.; Shin, Y.S. (1999) Strength deterioration of high strength concrete in sulfate environment. Cem. Concr. Res. 29 [9], 1397–1402. https://doi.org/10.1016/S0008-8846(99)00106-4

Prasad, J.; Jain, D.K.; Ahuja, A.K. (2006) Factors influencing the sulphate resistance of cement concrete and mortar. Asian J. Civil Eng. (Building and Housing) 7 [3], 259–268.

Nehdi, M.; Hayek, M. (2005) Behavior of blended cement mortars exposed to sulfate solutions cycling in relative humidity. Cem. Concr. Res. 35 [4], 731–742. https://doi.org/10.1016/j.cemconres.2004.05.032

Bonen, D.; Cohen, M.D. (1992) Magnesium sulfate attack on Portland cement paste-I. Microstructural analysis. Cem. Concr. Res. 22 [1], 169–180. https://doi.org/10.1016/0008-8846(92)90147-N

Skalny, J.; Marchand, J. (2002) Sulfate attack on concrete. Taylor & Francis e-Library, New York.

Lukowski, P.; Salih, A. (2015) Durability of mortars containing ground granulated blast-furnace slag in acid and sulphate environment. Procedia Eng. 108, 47–54. https://doi.org/10.1016/j.proeng.2015.06.118

Hassan, A.; Mahmud, H.B.; Jumaat, M.Z.; Alsubari, B.; Abdulla, A.I. (2013) Effect of magnesium sulphate on self-compacting concrete containing supplementary cementitious materials. Adv. Mater. Sci. Eng. https://doi.org/10.1155/2013/232371

Merida, A.; Kharchi, F. (2015) Pozzolan concrete durability on sulphate attack. Procedia Eng. 114, 832–837. https://doi.org/10.1016/j.proeng.2015.08.035

Bonen, D.; Cohen, M.D. (1992) Magnesium sulfate attack on Portland cement paste: II. Chemical and mineralogical analyses. Cem. Concr. Res. 22 [4], 707–718. https://doi.org/10.1016/0008-8846(92)90023-O

Amin, M.M.; Jamaludin, S.B.; Pa, F.C.; Chuen K.K. (2008) Effect of magnesium sulfate attack on ordinary Portland cement mortars. Portugaliae Electrochimica Acta 26, 235–242. https://doi.org/10.4152/pea.200802235

Santhanam, M.; Cohen, M.D.; Olek, J. (2002) Mechanism of sulfate attack: a fresh look part 1. Summary of experimental results. Cem. Concr. Res. 32 [6], 915–921. https://doi.org/10.1016/S0008-8846(02)00724-X

Santhanam, M.; Cohen, M.D.; Olek, J. (2001) Sulfate attack research-whither now?. Cem. Concr. Res. 31 [6], 845–851. https://doi.org/10.1016/S0008-8846(01)00510-5

Aye, T.; Oguchi, C.T. (2011) Resistance of plain and blended cement mortars exposed to severe sulfate attacks. Constr. Build. Mater. 25 [6], 2988–2996. https://doi.org/10.1016/j.conbuildmat.2010.11.106

Samanta, C.; Chatterjee, M.K. (1982) Sulfate resistance of portland-pozzolanic cements in relation to strength. Cem. Concr. Res. 12 [6], 726–734. https://doi.org/10.1016/0008-8846(82)90035-7

Duda, A. (1987) Aspects of the sulfate resistance of steelwork slag cements. Cem. Concr. Res. 17 [3], 373–384. https://doi.org/10.1016/0008-8846(87)90001-9

Torii, K.; Kawamura, M. (1994) Effects of fly ash and silica fume on the resistance of mortar to sulfuric acid and sulfate attack. Cem. Concr. Res. 24 [2], 361–370. https://doi.org/10.1016/0008-8846(94)90063-9

Gollop, R.S.; Taylor, H.F.W. (1996) Microstructural and microanalytical studies of sulfate attack. V. Comparison of different slag blends. Cem. Concr. Res. 26 [7], 1029–1044. https://doi.org/10.1016/0008-8846(96)00090-7

Al-Amoudi, O.S.B. (1998) Sulfate attack and reinforcement corrosion in plain and blended cements exposed to sulphate environments. Build. Environ. 33 [1], 53–61. https://doi.org/10.1016/S0360-1323(97)00022-X

Zeli?, J.; Krstulovi?, R.; Tkal?ec, E.; Krolo, P. (1999) Durability of the hydrated limestone-silica fume Portland cement mortars under sulphate attack. Cem. Concr. Res. 29 [6], 819–826.

Aköz, F.; Türker, F.; Koral, S.; Yuzer, N. (1999) Effects of raised temperature of sulfate solutions on the sulphate resistance of mortars with and without silica fume. Cem. Concr. Res. 29 [4], 537–544. https://doi.org/10.1016/S0008-8846(98)00251-8

Lee, S.T.; Moon, H.Y.; Swamy, R.N. (2005) Sulfate attack and role of silica fume in resisting strength loss. Cem. Concr. Compos. 27 [1], 65–76. https://doi.org/10.1016/j.cemconcomp.2003.11.003

Diab, A.M.; Awad, A.E.M.; Elyamany, H.E.; Abd Elmoaty, A.E.M. (2012) Guidelines in compressive strength assessment of concrete modified with silica fume due to magnesium sulfate attack. Constr. Build. Mater. 36, 311–318. https://doi.org/10.1016/j.conbuildmat.2012.04.075

Sezer, G.?. (2012) Compressive strength and sulfate resistance of limestone and/or silica fume mortars. Constr. Build. Mater. 26 [1], 613–618. https://doi.org/10.1016/j.conbuildmat.2011.06.064

Biricik, H.; Aköz, F.; Türker, F.; Berktay I. (2000) Resistance to magnesium sulfate and sodium sulphate attack of mortars containing wheat straw ash. Cem. Concr. Res. 30 [8], 1189–1197. https://doi.org/10.1016/S0008-8846(00)00314-8

Chatveera, B.; Lertwattanaruk, P. (2009) Evaluation of sulfate resistance of cement mortars containing black rice husk ash. J. Environ. Manage. 90 [3], 1435–1441. https://doi.org/10.1016/j.jenvman.2008.09.001 PMid:19008031

Chindaprasirt, P.; Paisitsrisawat, P.; Rattanasak, U. (2014) Strength and resistance to sulfate and sulfuric acid of ground fluidized bed combustion fly ash–silica fume alkali-activated composite. Adv. Powder Technol. 25 [3], 1087–1093. https://doi.org/10.1016/j.apt.2014.02.007

Nehdi, M.L.; Suleiman, A.R.; Soliman, A.M. (2014) Investigation of concrete exposed to dual sulfate attack. Cem. Concr. Res. 64, 42–53. https://doi.org/10.1016/j.cemconres.2014.06.002

Saca, N.; Georgescu, M. (2014) Behavior of ternary blended cements containing limestone filler and fly ash in magnesium sulfate solution at low temperature. Constr. Build. Mater. 71: 246–253. https://doi.org/10.1016/j.conbuildmat.2014.08.037

Yusuf, M.O. (2015) Performance of slag blended alkaline activated palm oil fuel ash mortar in sulfate environments. Constr. Build. Mater. 98: 417–424. https://doi.org/10.1016/j.conbuildmat.2015.07.012

Xia, C.; Li, Z.; Kunhe, F. (2009) Anti-crack performance of phosphorous slag concrete. Wuhan Uni. J. Nat. Sci. 14 [1], 080–086.

Xia, C.; Kunhe, F.; Huaquan, Y.; Peng, H. (2011) Hydration kinetics of phosphorous slag-cement paste. Wuhan Uni. J. Technol-Mater. 26 [1], 142–146.

Allahverdi, A.; Mahinroosta, M. (2013) Mechanical activation of chemically activated high phosphorous slag content cement. Powder Technol. 245, 182–188. https://doi.org/10.1016/j.powtec.2013.04.037

Allahverdi, A.; Pilehvar, S.; Mahinroosta, M. (2016) Influence of curing conditions on the mechanical and physical properties of chemically-activated phosphorous slag cement. Powder Technol. 288: 132–139. https://doi.org/10.1016/j.powtec.2015.10.053

Allahverdi, A.; BahriRashtAbadi, M.M. (2014) Resistance of chemically activated high phosphorous slag content cement against frost-salt attack. Cold Reg. Sci. Technol. 98, 18–25. https://doi.org/10.1016/j.coldregions.2013.11.001

Sokkary, T.M.; Assal, H.H.; Kandeel, A.M. (2004) Effect of silica fume or granulated slag on sulphate attack of ordinary portland and alumina cement blend. Ceram. Int. 30 [2], 133–138. https://doi.org/10.1016/S0272-8842(03)00025-7

Allahverdi, A.; Saffari, M. (2011) Chemical activation of phosphorous slag with a solid compound activator. Proceedings of 4th International Conference on Non- Traditional cements and Concretes 27–30 June, Brno, Czech Republic, 573–580.

Allahverdi, A.; Rahmani, A. (2009) Chemical activation of natural pozzolan with a solid compound activator. Cement Wapno Beton. 4, 205–213.

Al-Dulaijan, S.U. (2007) Sulfate resistance of plain and blended cements exposed to magnesium sulphate solutions. Constr. Build. Mater. 21, 1792–1802. https://doi.org/10.1016/j.conbuildmat.2006.05.017

Dong-xu, L.; Lin, C. (2002) A blended cement containing blast furnace slag and phosphorous slag. J. Wuhan Uni. Technol–Mater. Sci. Ed. 17 [2], 62–65. https://doi.org/10.1007/BF02832625

Damons, R.E., Petersen, F.W. (2002) An aspen model for the treatment of acid mine water. The European J. Mineral Processing Environ. Protection 2 [2], 69–81.



How to Cite

Allahverdi, A., Akhondi, M., & Mahinroosta, M. (2018). A composite cement of high magnesium sulphate resistance. Materiales De Construcción, 68(330), e154. https://doi.org/10.3989/mc.2018.11316



Research Articles