Impact of twisting high-performance polyethylene fibre bundle reinforcements on the mechanical characteristics of high-strength concrete
DOI:
https://doi.org/10.3989/mc.2019.01418Keywords:
High performance concrete, Workability, Fibre reinforcement, Mechanical properties, Bond resistanceAbstract
The quasi-static and dynamic mechanical behaviours of the concrete reinforced by twisting ultra-high molecular weight polyethylene (UHMWPE) fibre bundles with different volume fractions have been investigated. It was indicated that the improved mixing methodology and fibre geometry guaranteed the uniform distribution of fibres in concrete matrix. The UHMWPE fibres significantly enhanced the splitting tensile strength and residual compressive strength of concrete. The discussions on the key property parameters showed that the UHMWPE fibre reinforced concrete behaved tougher than the plain concrete. Owing to the more uniform distribution of fibres and higher bonding strength at fibre/matrix interface, the UHMWPE fibre with improved geometry enhanced the quasi-static splitting tensile strength and compressive strength of concrete more significantly than the other fibres. The dynamic compression tests demonstrated that the UHMWPE fibre reinforced concrete had considerable strain rate dependency. The bonding between fibres and concrete matrix contributed to the strength enhancement under low strain-rate compression.
Downloads
References
Song, P.S.; Hwang, S. (2004) Mechanical properties of high-strength steel fiber-reinforced concrete. Constr. Build. Mater. 18: 669-73. https://doi.org/10.1016/j.conbuildmat.2004.04.027
Hao, Y.; Hao, H. (2013) Dynamic compressive behaviour of spiral steel fibre reinforced concrete in split Hopkinson pressure bar tests. Constr. Build. Mater. 48: 521-32. https://doi.org/10.1016/j.conbuildmat.2013.07.022
Simões, T.; Octávio, C.; Valença, J.; Costa, H.; Dias-da- Costa, D.; Júlio, E. (2017) Influence of concrete strength and steel fibre geometry on the fibre/matrix interface. Compos. B. Eng. 122: 156-64. https://doi.org/10.1016/j.compositesb.2017.04.010
Choi, Y.; Yuan, R.L. (2005) Experimental relationship between splitting tensile strength and compressive strength of GFRC and PFRC. Cem. Concr. Res. 35: 1587-91. https://doi.org/10.1016/j.cemconres.2004.09.010
Langlois, V.; Fiorio, B.; Beaucour, A.L.; Cabrillac, R.; Gouvenot, D. (2007) Experimental study of the mechanical behavior of continuous glass and carbon yarn-reinforced mortars. Constr. Build. Mater. 21: 198-210. https://doi.org/10.1016/j.conbuildmat.2005.06.048
Dawood, E.T.; Ramli, M. (2011) High strength characteristics of cement mortar reinforced with hybrid fibres. Constr. Build. Mater. 25: 2240-7. https://doi.org/10.1016/j.conbuildmat.2010.11.008
Alberti, M.G.; Enfedaque, A.; Gálvez, J.C.; Cánovas, M.F.; Osorio, I.R. (2014) Polyolefin fiber-reinforced concrete enhanced with steel-hooked fibers in low proportions. Mater. Des. 60: 57-65. https://doi.org/10.1016/j.matdes.2014.03.050
Sim, J.; Park, C.; Moon, D.Y. (2005) Characteristics of basalt fiber as a strengthening material for concrete structures. Compos. B. Eng. 36: 504-12. https://doi.org/10.1016/j.compositesb.2005.02.002
Mastali, M.; Dalvand, A.; Sattarifard, A. (2017) The impact resistance and mechanical properties of the reinforced self-compacting concrete incorporating recycled CFRP fiber with different lengths and dosages. Compos. B. Eng. 112: 74-92. https://doi.org/10.1016/j.compositesb.2016.12.029
Hannawi, K.; Bian, H.; Prince-Agbodjan, W.; Raghavan, B. (2016) Effect of different types of fibers on the microstructure and the mechanical behavior of Ultra-High Performance Fiber-Reinforced Concretes. Compos. B. Eng. 86: 214-20. https://doi.org/10.1016/j.compositesb.2015.09.059
Raoof, S.M.; Koutas, L.N.; Bournas, D.A. (2017) Textile-reinforced mortar (TRM) versus fibre-reinforced polymers (FRP) in flexural strengthening of RC beams. Constr. Build. Mater. 151: 279-91. https://doi.org/10.1016/j.conbuildmat.2017.05.023
Karthikeyan, K.; Russell, B.P.; Fleck, N.A.; Wadley, H.N.G.; Deshpande, V.S. (2013) The effect of shear strength on the ballistic response of laminated composite plates. Eur. J. Mech. A. Solids. 42: 35-53. https://doi.org/10.1016/j.euromechsol.2013.04.002
Attwood, J.P.; Fleck, N.A.; Wadley, H.N.G.; Deshpande, V.S. (2015) The compressive response of ultra-high molecular weight polyethylene fibres and composites. Int. J. Solids. Struct. 71: 141-55. https://doi.org/10.1016/j.ijsolstr.2015.06.015
Attwood, J.P.; Khaderi, S.N.; Karthikeyan, K. (2014) The out-of-plane compressive response of Dyneema® composites. J. Mech. Phys. Solids. 70: 200-26. https://doi.org/10.1016/j.jmps.2014.05.017
O'Masta, M.R.; Crayton, D.H.; Deshpande, V.S.; Wadley, H.N.G. (2015) Mechanisms of penetration in polyethylene reinforced cross-ply laminates. Int. J. Impact. Eng. 86: 249- 64. https://doi.org/10.1016/j.ijimpeng.2015.08.012
Chocron, S.; King, N.; Bigger, R.; Walker, J.D.; Heisserer, U.; van der Werff, H. (2013) Impacts and Waves in Dyneema®HB80 Strips and Laminates. Int. J. Appl. Mech. 80: 1-10. https://doi.org/10.1115/1.4023349
Russell, B.P.; Karthikeyan, K.; Deshpande, V.S.; Fleck, N.A. (2013) The high strain rate response of Ultra High Molecular-weight Polyethylene: From fibre to laminate. Int. J. Impact. Eng. 60: 1-9. https://doi.org/10.1016/j.ijimpeng.2013.03.010
Karthikeyan, K.; Russell, B.P.; Fleck, N.A.; O'Masta, M.; Wadley, H.N.G.; Deshpande, V.S. (2013) The soft impact response of composite laminate beams. Int. J. Impact. Eng. 60: 24-36. https://doi.org/10.1016/j.ijimpeng.2013.04.002
Li, J.; Wu, C.; Liu, Z.X. (2018) Comparative evaluation of steel wire mesh, steel fibre and high performance polyethylene fibre reinforced concrete slabs in blast tests. Thin-Walled. Struct. 126: 117-26. https://doi.org/10.1016/j.tws.2017.05.023
Li, L.; Yan, L.; Zhang, Y. (2015) Experiment research of UHMWPE fiber reinforced concrete under triaxial compression. International Conference on Applied Science and Engineering Innovation (ASEI 2015). 1847-52. https://doi.org/10.2991/asei-15.2015.367
Zhang, Y.; Yan, L.; Zhu, L.; Zhang, S.; Li, L. (2014) Experiment research on mechanical properties and penetration performance of UHMWPE fiber concrete. Adv. Mater. Res. 989-994: 961-5. https://doi.org/10.4028/www.scientific.net/AMR.989-994.961
Xu, Z.; Hao, H.; Li, H.N. (2012) Experimental study of dynamic compressive properties of fibre reinforced concrete material with different fibres. Mater. Des. 33: 42-55. https://doi.org/10.1016/j.matdes.2011.07.004
Lok, T.S.; Asce, M.; Zhao, P.J. (2014) Impact response of steel fibre-reinforced concrete using a Split Hopkinson Pressure Bar. J. Mater. Civ. Eng. 16: 54-9. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:1(54)
Tedesco, J.W.; Ross, C.A. (1998) Strain-Rate-Dependent Constitutive Equations for Concrete. J. Press. Vessel. Technol. 120: 398-405. https://doi.org/10.1115/1.2842350
Li, Q.M.; Meng, H. (2003) About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test. Int. J. Solids. Struct. 10: 343- 60. https://doi.org/10.1016/S0020-7683(02)00526-7
Yan, L.; Zhang, Y.; Zhu, L. (2014) Basic mechanical properties of ultra high molecular weight polyethylene fiber reinforced concrete. Journal of National University of Defense Technology. 36: 43-7.
Máca, P.; Sovják, R.; Konvalinka, P. (2014) Mix design of UHPFRC and its response to projectile impact. Int. J. Impact. Eng. 63: 158-63. https://doi.org/10.1016/j.ijimpeng.2013.08.003
Habel, K.; Gauvreau, P. (2008) Response of ultra-high performance fiber reinforced concrete (UHPFRC) to impact and static loading. Cem. Concr. Compos. 30: 938- 46. https://doi.org/10.1016/j.cemconcomp.2008.09.001
Lin, Z. (2013) Research on mechanical behaviors and anti-penetration characteristics of UHMWPE fibre reinforced concrete. Changsha: National University of Defence Technology.
Su, Y.; Li, J.; Wu, C.; Wu, P.; Li, Z.X. (2016) Influences of nano-particles on dynamic strength of ultra-high performance concrete. Compos. B. Eng. 91: 595-609. https://doi.org/10.1016/j.compositesb.2016.01.044
Ji, B. (2011) Experimental study and numerical simulation on static and dynamic compressive behavior of 3-D braid steel fiber reinforced concrete. Nanjing, China: Nanjing University of Aeronautics and Astronautics.
Zhang, W. (2010) Experimental research of the mechanical properties of polypropylene fiber reinforced high-strength concrete. Taiyuan: Taiyuan University of Technology.
Jiang, C.; Fan, K.; Wu, F.; Chen, D. (2014) Experimental study on the mechanical properties and microstructure of chopped basalt fibre reinforced concrete. Mater. Des. 58: 187-93. https://doi.org/10.1016/j.matdes.2014.01.056
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read here the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.