Characterisation of recycled ceramic mortars for use in prefabricated beam-filling pieces in structural floors

Authors

DOI:

https://doi.org/10.3989/mc.2019.04518

Keywords:

Mortar, Ceramic, Mechanical properties, Modelization, X-ray Diffraction (XRD)

Abstract


This study analyses a procedure to manufacture mortars with different percentages of ceramic waste as partial replacement for aggregates. The study also examines the physical, chemical and mechanical properties of the new mortars, analysing substitution ratios that range from 10% to 50%. Prior to this, all the materials used in the production of the mortar were characterised using X-ray diffraction (XRD) and fluorescence (XRF). The objective was to determine the similarity between different types of ceramic waste, as well as the differences in the minerology and chemical composition with the aggregate. The results of the study show that it is possible to obtain mortars with lower densities compared to the same product with no recycled content. The product’s characteristics make it ideal for the manufacture of prefabricated components for structural floors for rehabilitation works. Finally, the pieces are used in a real rehabilitation case study, highlightining the structural advantages.

Downloads

Download data is not yet available.

References

Instituto Nacional de Estadística. Encuesta sobre la recogida y tratamiento de residuos urbanos y la generación de residuos en los sectores servicios y de la construcción en el año 2011. 2013.

Plan de Gestión de Residuos de Construcción y Demolición de la Consejería de Medio Ambiente y Ordenación del Territorio. Comunidad de Madrid (2006-2016).

CEDEX, Centro de Estudios y Experimentación de obras Públicas. Ficha técnica Residuos de Construcción y Demolición. 2014 .

Plan Estatal Marco de de Gestión de Residuos 2016-2022 (PEMAR) Secretaria de Estado de Medio ambiente. Ministerio de Agricultura, Alimentación y Medio ambiente. Gobierno de España.

EHE. Instrucción Española de Hormigón Estructural - EHE-08 (Spanish Code Structural Concrete). Ministerio de Fomento, Madrid; 2008 [Spanish] .

Hansen, T.C. (2004) RILEM REPORT Recycling of Demolished Concrete and Masonry. E&FN Spon, Bodmin, UK, (2004); 6 .

Pereira-de-Oliveira, L. A.; Castro-Gomes, J. P.; Santos, P. M. (2015) The potential puzzolanic activity of glass and red-clay ceramic waste as cement mortars components. Constr. Build. Mater. 31, 197-203. https://doi.org/10.1016/j.conbuildmat.2011.12.110

Medina, C.; Juan, A.; Frías, M.; Sánchez de Rojas, M. I.; Morán, J. M.; Guerra, M. I. (2011) Characterization of concrete made with recycled aggregate from ceramic sanitary ware. Mater. Construcc. 61 [304], 533-546. https://doi.org/10.3989/mc.2011.59710

Medina, C.; Sánchez de Rojas, M. I.; Frías, M. (2012) Reuse of sanitary ceramic wastes as coarse aggregate in eco-efficient concretes. Cem. Concr. Compos. 34 [1], 48-54. https://doi.org/10.1016/j.cemconcomp.2011.08.015

Medina, C.; Frías, M.; Sanchez de Rojas, M. I. (2012) Microstructure and properties of recycled concretes using ceramic sanitary ware industry waste as coarse aggregate. Constr. Build. Mater. 31, 112-118. https://doi.org/10.1016/j.conbuildmat.2011.12.075

Medina, C.; Sanchez de Rojas, M. I.; Frías, M. (2013) Properties of recycled ceramic aggregate concretes: water resistance. Cem. Concr. Compos. 40, 21-29. https://doi.org/10.1016/j.cemconcomp.2013.04.005

Medina, C.; Sanchez de Rojas, M. I.; Thomas, C.; Polanco, J. A.; Frías, M. (2016) Durability of recycled concrete made with recycled ceramic sanitary ware aggregate. Inter-indicator relationships. Constr. Build. Mater. 105, 480-486. https://doi.org/10.1016/j.conbuildmat.2015.12.176

Corinaldesi, V. (2012) Environmentally-friendly bedding mortars forrepair of historical buildings. Constr. Build. Mater. 35, 778-784. https://doi.org/10.1016/j.conbuildmat.2012.04.131

Matias, G.; Faria, P.; Torres, I. (2014) Lime mortars with ceramic wastes: characterization of components and their influence on the mechanical behaviour. Constr. Build. Mater. 73, 523-534. https://doi.org/10.1016/j.conbuildmat.2014.09.108

Ledesma, E. F.; Jiménez, J. R.; Ayuso, J.; Fernández, J. M.; de Brito, J. (2015) Maximum feasible use of recycled sand from construction and demolition waste for eco-mortar production-Part-I: ceramic masonry waste. J. Clean. Prod. 87, 692-706. https://doi.org/10.1016/j.jclepro.2014.10.084

Jiménez, J. R.; Ayuso, J.; López, M.; Fernández, J. M.; De Brito, J. (2013) Use of fine recycled aggregates from ceramic waste in masonry mortar manufacturing. Constr. Build. Mater. 40, 679-690. https://doi.org/10.1016/j.conbuildmat.2012.11.036

Silva, J.; De Brito, J.; Veiga, R. (2010) Recycled red-clay ceramic construction and demolition waste for mortars production. J. Mater. Civil Eng. 22 [3], 236-244. https://doi.org/10.1061/(ASCE)0899-1561(2010)22:3(236)

Farinha, C.; de Brito, J.; Veiga, R. (2015) Incorporation of fine sanitary ware aggregates in coating mortars. Constr. Build. Mater. 83, 194-206. https://doi.org/10.1016/j.conbuildmat.2015.03.028

Katzer, J. (2013) Strength performance comparison of mortars made with waste fine aggregate and ceramic fume. Constr. Build. Mater. 2013; 47:1-6. https://doi.org/10.1016/j.conbuildmat.2013.04.039

Schackow, A.; Stringari, D.; Senff, L.; Correia, S. L.; Segadães, A. M. (2015) Influence of firedclay brick waste addition son the durability of mortars. Cem. Concr. Compos. 62, 82-89. https://doi.org/10.1016/j.cemconcomp.2015.04.019

Silva, J.; de Brito, J.; Veiga, R. (2009) Incorporation of fine ceramics in mortars. Constr. Build. Mater. 23 [1], 556-564. https://doi.org/10.1016/j.conbuildmat.2007.10.014

Poon, C. S.; Kou, S. C.; Lam, L. (2002) Use of recycled aggregates in molded concrete bricks and blocks. Constr. Build. Mater. 16 [5], 281-289. https://doi.org/10.1016/S0950-0618(02)00019-3

Soutsos, M. N.; Tang, K.; Millard, S. G. (2012) The use of recycled demolition aggregate in precast concrete products-Phase III: Concrete pavement flags. Constr. Build. Mater. 36, 674-680. https://doi.org/10.1016/j.conbuildmat.2012.06.045

Poon, C. S.; Chan, D. (2006) Paving blocks made with recycled concrete aggregate and crushed clay brick. Constr. Build. Mater. 20 [8], 569-577. https://doi.org/10.1016/j.conbuildmat.2005.01.044

Jankovic, K.; Nikolic, D.; Bojovic, D. (2012) Concrete paving blocks and flag made with crushed brick as aggregate. Constr. Build. Mater. 28 [1], 659-663. https://doi.org/10.1016/j.conbuildmat.2011.10.036

Sadek, D. M.; El Nouhy, H. A. (2014) Properties of paving unit sin corporating crushed ceramic. HBRC Journal. 10 [2], 198-205. https://doi.org/10.1016/j.hbrcj.2013.11.006

Penteado, C. S. G.; de Carvalho, E. V.; Lintz, R. C. C. (2016) Reusing ceramic tile polishing waste in paving block manufacturing. J. Clean. Prod. 112, 514-520. https://doi.org/10.1016/j.jclepro.2015.06.142

Agrela, F.; Barbudo, A.; Ramírez, A.; Ayuso, J.; Carvajal, M. D.; Jiménez, J. R. (2012) Construction of road section using mixed recycled aggregates treated with cement in Malaga, Spain. Resour. Conserv. Recy. 58, 98-106. https://doi.org/10.1016/j.resconrec.2011.11.003

España. Real Decreto 256/2016. Boletín oficial del Estado, 25 de Junio de 2016, n 153, 45755 - 45824. Available at: https://www.boe.es/diario_boe/txt.php?id= BOE-A-2016-6167#analisis

UNE-EN 933-1:2012. European standard. Tests for geometrical properties of aggregates - Part 1: Determination of particle size distribution - Sieving method.

UNE-EN 1015-11:2000. European standard. Methods of test for mortar for masonry - Part 11: Determination of flexural and compressive strength of hardened mortar.

UNE-EN 1015-6:1999/A1:2007. European standard. Methods of test for mortar for masonry - Part 6: Determination of bulk density of fresh mortar.

UNE-EN 1015-3:2000. European standard. Methods of test for mortar for masonry - Part 3: Determination of consistence of fresh mortar (by flow table).

UNE-EN 1015-10:2000. European standard. Methods of test for mortar for masonry - Part 10: Determination of dry bulk density of hardened mortar.

UNE-EN 1015-18:2003. European standard. Methods of test for mortar masonry - Part 18: Determination of water absorption coefficient due to capillary action of hardened mortar.

UNE-EN 12390-13:2014. European standard. Testing hardened concrete - Part 13: Determination of secant modulus of elasticity in compression.

Rubio-de-Hita, P.; Pérez-Gálvez, F.; Morales-Conde, M. J.; Rodríguez-Liñán, C. (2016) Procedimiento para la fabricación de morteros con residuos cerámicos y su aplicación en una pieza de entrevigado para forjados con vigas de madera. P201601008.

UNE-EN 67042:1988. European standard. Big ceramic pieces of burned clay. Determination of the modulus of rupture.

CTE-DB-SE-M: 2006. Código Técnico de la Edificación. Documento Básico de Seguridad Estructural: Madera.

Eurocode 5 (2003). Eurocode 5-Design of timber structures-Part 1-1: General rules and rules for buildings.

CTE-DB-SE: 2006. Código Técnico de la Edificación. Documento Básico de Seguridad Estructural.

CTE-DB-SI: 2006. Código Técnico de la Edificación. Documento Básico de Seguridad ante Incendio.

Published

2019-06-30

How to Cite

Rubio de Hita, P., Pérez-Gálvez, F., Morales-Conde, M. J., & Pedreño-Rojas, M. A. (2019). Characterisation of recycled ceramic mortars for use in prefabricated beam-filling pieces in structural floors. Materiales De Construcción, 69(334), e189. https://doi.org/10.3989/mc.2019.04518

Issue

Section

Research Articles