Investigación de los parámetros que influyen en el progreso de la profundidad de carbonatación del hormigón usando redes neuronales artificiales
DOI:
https://doi.org/10.3989/mc.2020.02019Palabras clave:
Hormigón, Cenizas volantes, Durabilidad, Carbonatación, ModelizaciónResumen
La carbonatación es un problema perjudicial de durabilidad del hormigón que puede alterar la microestructura del hormigón y provocar el inicio de la corrosión en barras de refuerzo. Estudios previos se centraron en el uso de redes neuronales artificiales (RNA) para la predicción de la profundidad de la carbonatación del hormigón y para minimizar la necesidad de pruebas de laboratorio destructivas y elaboradas. Este estudio tiene como objetivo proporcionar una precisión mejorada de la simulación y la predicción de la carbonatación con una arquitectura RNA que incluye dieciocho parámetros de entrada con una función alternativa de Gradiente de Conjugado Escalado. Después de asegurar un valor prometedor del coeficiente de correlación tan alto como 0.98, se estudió la influencia de los parámetros de entrada propuestos en el progreso de la profundidad de carbonatación. Se observó que los resultados de este análisis paramétrico cumplían exitosamente con la experiencia de ingeniería civil convencional. Por lo tanto, el modelo RNA empleado puede ser utilizado como una herramienta eficiente para estudiar en detalle y proporcionar información sobre el problema de carbonatación en el hormigón.
Descargas
Citas
Houst, Y.F. (1996) The role of moisture in the carbonation of cementitious materials. Int. J. Restor. Build. Monum. 2, 49-66. https://doi.org/10.1515/rbm-1996-5083
Castellote, M.; Andrade, C.; Turrillas, X.; Campo, J.; Cuello, G.J. (2008) Accelerated carbonation of cement pastes in situ monitored by neutron diffraction. Cem. Concr. Res. 38[12], 1365-1373. https://doi.org/10.1016/j.cemconres.2008.07.002
Shamsad, A. (2003) Reinforcement corrosion in concrete structures, its monitoring and service life prediction--a review. Cem. Concr. Compos. 25[4-5], 459-471. https://doi.org/10.1016/S0958-9465(02)00086-0
Huet, B.; L'Hostis, V.; Miserque, F.; Idrissi, H. (2005) Electrochemical behavior of mild steel in concrete: Influence of pH and carbonate content of concrete pore solution. Electrochim. Acta. 51[1], 172-180. https://doi.org/10.1016/j.electacta.2005.04.014
Malami, S.I.; Akpinar, P.; Lawan, M.M. (2018) Preliminary investigation of carbonation problem progress in concrete buildings of north Cyprus. MATEC Web Conf. 20306007. https://doi.org/10.1051/matecconf/201820306007
Khashman, A.; Akpinar, P. (2017) Non-destructive prediction of concrete compressive strength using neural networks. Procedia. Comput. Sci. 108, 2358-2362. https://doi.org/10.1016/j.procs.2017.05.039
Khashman, A. (2010) Neural networks for credit risk evaluation: Investigation of different neural models and learning schemes. Expert. Syst. Appl. 37[9], 6233-6239. https://doi.org/10.1016/j.eswa.2010.02.101
Akpinar, P.; Uwanuakwa, I.D. (2016) Intelligent prediction of concrete carbonation depth using neural networks. Bull. Transilv. Univ. Bras¸ov. Se.r III Math. Phys. 9[2], 99-108.
Kwon, S.-J.; Song, H.-W. (2010) Analysis of carbonation behavior in concrete using neural network algorithm and carbonation modeling. Cem. Concr. Res. 40[1], 119-127. https://doi.org/10.1016/j.cemconres.2009.08.022
Lu, C.; Liu, R. (2009) Predicting carbonation depth of prestressed concrete under different stress states using artificial neural network. Adv Artif Neural Syst. 20091-8. https://doi.org/10.1155/2009/193139
Taffese, W.Z.; Sistonen, E.; Puttonen, J. (2015) CaPrM: Carbonation prediction model for reinforced concrete using machine learning methods. Constr. Build. Mater. 100, 70-82. https://doi.org/10.1016/j.conbuildmat.2015.09.058
Villain, G.; Thiery, M.; Platret, G. (2007) Measurement methods of carbonation profiles in concrete: Thermogravimetry, chemical analysis and gammadensimetry. Cem. Concr. Res. 37[8], 1182-1192. https://doi.org/10.1016/j.cemconres.2007.04.015
Kari, O.P.; Puttonen, J.; Skantz, E. (2014) Reactive transport modelling of long-term carbonation. Cem. Concr. Compos. 5242-53. https://doi.org/10.1016/j.cemconcomp.2014.05.003
Saetta, A. V.; Vitaliani, R. V. (2005) Experimental investigation and numerical modeling of carbonation process in reinforced concrete structures: Part II. Practical applications. Cem. Concr. Res. 35[5], 958-967. https://doi.org/10.1016/j.cemconres.2004.06.023
Chang, C.F.; Chen, J.W. (2006) The experimental investigation of concrete carbonation depth. Cem. Concr. Res. 36[9], 1760-1767. https://doi.org/10.1016/j.cemconres.2004.07.025
Cui, H.; Tang, W.; Liu, W.; Dong, Z.; Xing, F. (2015) Experimental study on effects of CO2 concentrations on concrete carbonation and diffusion mechanisms. Constr. Build. Mater. 93, 522-527. https://doi.org/10.1016/j.conbuildmat.2015.06.007
Jiang, L.; Lin, B.; Cai, Y. (2000) A model for predicting carbonation of high-volume fly ash concrete. Cem. Concr. Res. 30[5], 699-702. https://doi.org/10.1016/S0008-8846(00)00227-1
Balayssac, J.P.; Détriché, C.H.; Grandet, J. (1995) Effects of curing upon carbonation of concrete. Constr. Build. Mater. 9[2], 91-95. https://doi.org/10.1016/0950-0618(95)00001-V
Ati?, C.D. (2003) Accelerated carbonation and testing of concrete made with fly ash. Constr. Build. Mater. 17[3], 147-152. https://doi.org/10.1016/S0950-0618(02)00116-2
Rozière, E.; Loukili, A.; Cussigh, F. (2009) A performance based approach for durability of concrete exposed to carbonation. Constr. Build. Mater. 23[1], 190-199. https://doi.org/10.1016/j.conbuildmat.2008.01.006
Hussain, S.; Bhunia, D.; Singh, S.B. (2017) Comparative study of accelerated carbonation of plain cement and fly-ash concrete. J. Build. Eng. 10, 26-31. https://doi.org/10.1016/j.jobe.2017.02.001
Villain, G.; Thiery, M.; V, B.-B.; Platret, G. (2007) Different methods to measure the carbonation profiles in concrete. In: Baroghel-Bouny V, Andrade C, Torrent R, Scrivener K (eds) International RILEM Workshop on Performance Based Evaluation and Indicators for Concrete Durability. RILEM Publications, Madrid, 89-98.
Younsi, A.; Turcry, P.; Aït-Mokhtar, A.; Staquet, S. (2013) Accelerated carbonation of concrete with high content of mineral additions: Effect of interactions between hydration and drying. Cem. Concr. Res. 43[1], 25-33. https://doi.org/10.1016/j.cemconres.2012.10.008
Turcry, P.; Oksri-Nelfia, L.; Younsi, A.; Aït-Mokhtar, A. (2014) Analysis of an accelerated carbonation test with severe preconditioning. Cem. Concr. Res. 57, 70-78. https://doi.org/10.1016/j.cemconres.2014.01.003
Borges, P.H.R.; Costa, J.O.; Milestone, N.B.; Lynsdale, C.J.; Streatfield, R.E. (2010) Carbonation of CH and C-S-H in composite cement pastes containing high amounts of BFS. Cem. Concr. Res. 40[2], 284-292. https://doi.org/10.1016/j.cemconres.2009.10.020
Brouwers, H. (2003) Chemical reactions in hydrated ordinary Portland cement based on the work by powers and brownyard. In: Fisher HB (ed) 15th Ibausil (Internationale Baustofftagung). F.A. Finger Institut für Baustoffkunde, Weimar, Germany, pp. 1-0553-1-0566.
Gartner, E.; Maruyama, I.; Chen, J. (2017) A new model for the C-S-H phase formed during the hydration of Portland cements. Cem. Concr. Res. 97, 95-106. https://doi.org/10.1016/j.cemconres.2017.03.001
Drouet, E.; Poyet, S.; Le Bescop, P.; Torrenti, J.-M.; Bourbon, X. (2019) Carbonation of hardened cement pastes: Influence of temperature. Cem. Concr. Res. 115, 445-459. https://doi.org/10.1016/j.cemconres.2018.09.019
Ashraf, W. (2016) Carbonation of cement-based materials: Challenges and opportunities. Constr. Build. Mater. 120, 558-570. https://doi.org/10.1016/j.conbuildmat.2016.05.080
Wang, A.; Zhang, C.; Sun, W. (2004) Fly ash effects: II. The active effect of fly ash. Cem. Concr. Res. 34[11], 2057-2060. https://doi.org/10.1016/j.cemconres.2003.03.001
Parrott, L.J. (1996) Some effects of cement and curing upon carbonation and reinforcement corrosion in concrete. Mater. Struct. 29, 164-173. https://doi.org/10.1007/BF02486162
Liu, P.; Chen, Y.; Yu, Z. (2019) Effects of temperature, relative humidity and CO2 concentration on concrete carbonation. Mag. Concr. Res. 1-44. https://doi.org/10.1680/jmacr.18.00496
Li, Z.; Fang, F.; Tang, X.; Cai, N. (2012) Effect of temperature on the carbonation reaction of CaO with CO2. Energy & Fuels. 26[4], 2473-2482. https://doi.org/10.1021/ef201543n
Park, D.C. (2008) Carbonation of concrete in relation to CO2 permeability and degradation of coatings. Constr. Build. Mater. 22[11], 2260-2268. https://doi.org/10.1016/j.conbuildmat.2007.07.032
Thiery, M.; Villain, G.; Dangla, P.; Platret, G. (2007) Investigation of the carbonation front shape on cementitious materials: Effects of the chemical kinetics. Cem. Concr. Res. 37[7], 1047-1058. https://doi.org/10.1016/j.cemconres.2007.04.002
Silva, A.; Neves, R.; De Brito, J. (2014) Statistical modelling of carbonation in reinforced concrete. Cem. Concr. Compos. 50, 73-81. https://doi.org/10.1016/j.cemconcomp.2013.12.001
Sola, J.; Sevilla, J. (1997) Importance of input data normalization for the application of neural networks to complex industrial problems. IEEE Trans. Nucl. Sci. 44[3], 1464-1468. https://doi.org/10.1109/23.589532
Uwanuakwa, I.D. (2019) ANN Regression MATLAB code.
Taffese, W.Z.; Al-Neshawy, F.; Sistonen, E.; Ferreira, M. (2015) Optimized neural network based carbonation prediction model. In: International Symposium Non-Destructive Testing in Civil Engineering (NDT-CE). Berlin, Germany, pp. 1074-1083.
Kellouche, Y.; Boukhatem, B.; Ghrici, M.; Tagnit-Hamou, A. (2019) Exploring the major factors affecting fly-ash concrete carbonation using artificial neural network. Neural. Comput. Appl. 31[S2], 969-988. https://doi.org/10.1007/s00521-017-3052-2
Arandigoyen, M.; Álvarez, J.I.; Álvarez, J.I. (2006) Pore structure and carbonation in blended lime-cement pastes. Mater. Construcc. 56[282], 17-30. https://doi.org/10.3989/mc.2006.v56.i281.88
Elmoaty, A.E.M.A. (2018) Four-years carbonation and chloride induced steel corrosion of sulfate-contaminated aggregates concrete. Constr. Build. Mater. 163, 539-556. https://doi.org/10.1016/j.conbuildmat.2017.12.128
Katz, A.; Bentur, A.; Wasserman, R. (2015) Effect of cement content on concrete durability. In: Quattrone M, John VM (eds) XIII International Conference on Durability of Building Materials and Components - XIII DBMC. RILEM Publications, Sao Paulo, Brazil, 1137-1142.
Khunthongkeaw, J.; Tangtermsirikul, S.; Leelawat, T. (2006) A study on carbonation depth prediction for fly ash concrete. Constr. Build. Mater. 20[9], 744-753. https://doi.org/10.1016/j.conbuildmat.2005.01.052
Quan, H.; Kasami, H. (2013) Experimental study on effects of type and replacement ratio of fly ash on strength and durability of concrete. Open. Civ. Eng. J. 7[1], 93-100. https://doi.org/10.2174/1874149520130708004
Samenow, J. (2016) Two Middle East locations hit 129 degrees, hottest ever in Eastern Hemisphere, maybe the world. Washington Post.
Chen, S.; Sun, W.; Zhang, Y.; Guo, F. (2008) Carbonation depth prediction of fly ash concrete subjected to 2-and 3-dimensional CO2 attack. Front. Archit. Civ. Eng. China. 2[4], 395-400. https://doi.org/10.1007/s11709-008-0046-2
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2020 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.