Clayey soil stabilization using alkali-activated cementitious materials
DOI:
https://doi.org/10.3989/mc.2020.07519Keywords:
Soil stabilization, Clayey soil, Alkali-activated cement, Fly ash, Blast furnace slagAbstract
In this study, a clayey soil classified as A-7-5 according ASTM D3282, was stabilized using alkali-activated cementitious materials (AAC) added to the soil dry in percentages of 20 and 30%. Fly ash (F1, F2) with high unburned carbon content (up to 38.76%), hydrated lime (L) and granulated blast furnace slag were used. Unconfined compressive strength and flexural strength at 28 days of curing and the durability after 12 wetting-drying cycles were evaluated. The results were compared with a soil-cement reference mixture. The soil treated with AAC-F1L showed a volume expansion of 0.51% and volume contraction of -0.57% compared with the 0.59% expansion and -0.68% contraction of the soil-cement reference mixture. Additionally, the mass loss after the wetting and drying cycles is only 3.74% which is slightly lower than the mass loss of the soil stabilized with ordinary Portland cement (OPC) (3.86%) and well below the value specified in Colombian regulations (7%).
Downloads
References
Petry, T.M.; Little, D.N. (2002) Review of Stabilization of Clays and Expansive Soils in Pavements and Lightly Loaded Structures - History, Practice, and Future. J. Mater. Civ. Eng. 14[6], 447-460. https://doi.org/10.1061/(ASCE)0899-1561(2002)14:6(447)
Behnood, A. (2018) Soil and clay stabilization with calcium-and non-calcium-based additives: A state-of-the-art review of challenges, approaches and techniques. Transp. Geotech. 17, Part A, 14-32. https://doi.org/10.1016/j.trgeo.2018.08.002
Shi, C.; Jiménez, A.F.; Palomo, A. (2011) New cements for the 21st century : The pursuit of an alternative to Portland cement. Cem. Concr. Res. 41[7], 750-763. https://doi.org/10.1016/j.cemconres.2011.03.016
Juenger, M.C.G.G.; Winnefeld, F.; Provis, J.L.; Ideker, J.H. (2011) Advances in alternative cementitious binders. Cem. Concr. Res. 41[12], 1232-1243. https://doi.org/10.1016/j.cemconres.2010.11.012
Palomo, A.; Krivenko, P.; Garcia-Lodeiro, I.; Kavalerova, E.; Maltseva, O.; Fernández-Jiménez, A. (2014) A review on alkaline activation: new analytical perspectives. Mater. Construcción. 64[315], e022. https://doi.org/10.3989/mc.2014.00314
Wilkinson, A.; Haque, A.; Kodikara, J. (2010) Stabilisation of clayey soils with industrial by-products: part B. Proc. Inst. Civ. Eng. - Gr. Improv. 163[13], 165-172. https://doi.org/10.1680/grim.2010.163.3.165
Cristelo, N.; Glendinning, S.; Fernandes, L.; Pinto, A.T.; Teixeira, A. (2012) Effect of calcium content on soil stabilisation with alkaline activation. Constr. Build. Mater. 29, 167-174. https://doi.org/10.1016/j.conbuildmat.2011.10.049
Cristelo, N.; Glendinning, S.; Miranda, T.; Oliveira, D.; Silva, R. (2012) Soil stabilisation using alkaline activation of fly ash for self compacting rammed earth construction. Constr. Build. Mater. 36, 727-35. https://doi.org/10.1016/j.conbuildmat.2012.06.037
Sargent, P.; Hughes, P.N.; Rouainia, M.; White, M.L. (2013) The use of alkali activated waste binders in enhancing the mechanical properties and durability of soft alluvial soils. Eng. Geol. 152[1], 96-108. https://doi.org/10.1016/j.enggeo.2012.10.013
Zhang, M.; Guo, H.; El-Korchi, T.; Zhang, G.; Tao, M. (2013) Experimental feasibility study of geopolymer as the next-generation soil stabilizer. Constr. Build. Mater. 47, 1468-1478. https://doi.org/10.1016/j.conbuildmat.2013.06.017
Siddiqua, S.; Barreto, P.N.M. (2018) Chemical stabilization of rammed earth using calcium carbide residue and fly ash. Constr. Build. Mater. 169, 364-71. https://doi.org/10.1016/j.conbuildmat.2018.02.209
Ghadir, P.; Ranjbar, N. (2018) Clayey soil stabilization using geopolymer and Portland cement. Constr. Build. Mater. 188, 361-71. https://doi.org/10.1016/j.conbuildmat.2018.07.207
ASTM (American Society of Testing Materials). (2017) ASTM D6913/D6913M-17 Standard Test methods for Particle-Size Distribution (Gradation) of Soils Using sieve Analysis.
ASTM (American Society for Testing Materials). (2017) ASTM D4318 ? 17e1 Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils.
ASTM (American Society of Testing Materials). (2015) ASTM D3282-15 Standard Practice for Classification of Soils and Soil-Aggregate Mixtures for Highway Construction Purposes.
ASTM (American Society of Testing Materials). (2012) ASTM D1557-12e1 Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft3 (2,700 [kN-m/m3]))
Portland Cement Association. (1992) Soil-Cement Laboratory Handbook. Ed. Skokie, Illinois. 10-13 pp.
ASTM (American Society of Testing Materials). (2017) ASTM D1632-17 Standard Practice for Making and Curing Soil-Cement Compression and Flexure Test Specimens in the Laboratory.
ASTM (American Society of Testing Materials). (2017) ASTM D1633-17 Standard Test Methods for Compressive Strength of Molded Soil-Cement Cylinders.
ASTM ( American Society of Testing Materials). (2012) ASTM D1635/D1635M-12 Standard Test Method for Flexural Strength of Soil-Cement Using Simple Beam with Third-Point Loading.
ASTM (American Society of Testing Materials). (2015) ASTM D559/D559M-15 Standard Test Methods for Wetting and Drying Compacted Soil-Cement Mixtures. ASTM.
Oluwatuyi, O.E.; Adeola, B.O.; Alhassan, E.A.; Nnochiri, E.S.; Modupe, A.E.; Elemile O.O; Obayanju T.; Akerele G. (2018) Ameliorating effect of milled eggshell on cement stabilized lateritic soil for highway construction. Case Stud. Constr. Mater. 9, e00191. https://doi.org/10.1016/j.cscm.2018.e00191
Phummiphan, I.; Horpibulsuk, S.; Rachan, R.; Arulrajah, A.; Shen, S.; Chindaprasirt, P. (2017) High Calcium Fly Ash Geopolymer Stabilized Lateritic Soil and Granulated Blast Furnace Slag Blends as a Pavement Base Material. J. Hazard. Mater. 341, 257-267. https://doi.org/10.1016/j.jhazmat.2017.07.067 PMid:28797942
Sharma, A.K.; Sivapullaiah, P.V. (2016) Strength development in fly ash and slag mixtures with lime. Proc. Inst. Civ. Eng. - Ground Improv. 169[3], 194-205. https://doi.org/10.1680/jgrim.14.00024
Osinubi, K.J. (2006) Influence of Compactive Efforts on Lime-Slag Treated Tropical Black Clay. J. Mater. Civ. Eng. 18[2], 175-181. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:2(175)
Lee, S.; Seo, M.D.; Kim, Y.J.; Park, H.H.; Kim, T.N.; et al. (2010) Unburned carbon removal effect on compressive strength development in a honeycomb briquette ash-based geopolymer. Int. J. Miner. Process. 97[1-4], 20-25. https://doi.org/10.1016/j.minpro.2010.07.007
Shearer, C.R.; Provis, J.L.; Bernal, S.A.; Kurtis, K.E. (2016) Alkali-activation potential of biomass-coal co-fired fly ash. Cem. Concr. Compos. 73, 62-74. https://doi.org/10.1016/j.cemconcomp.2016.06.014
Fernández-Jimenez, A.; Palomo, A. (2003) Characterisation of fly ashes. Potential reactivity as alkaline cements. Fuel. 82[18], 2259-2265. https://doi.org/10.1016/S0016-2361(03)00194-7
van Deventer, J.S.J.; Provis, J.L.; Duxson, P.; Lukey, G.C. (2007) Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products. J. Hazard. Mater. 139[3], 506-513. https://doi.org/10.1016/j.jhazmat.2006.02.044 PMid:16600483
Lemougna, P.N.; MacKenzie, K.J.D.D.; Jameson, G.N.L.L.; Rahier, H.; Chinje Melo, U.F. (2013) The role of iron in the formation of inorganic polymers (geopolymers) from volcanic ash: a 57Fe Mössbauer spectroscopy study. J. Mater. Sci. 48[15], 5280-5286. https://doi.org/10.1007/s10853-013-7319-4
Choi, S.C.; Lee, W.K. (2012) Effect of Fe2O3 on the Physical Property of Geopolymer Paste. Adv. Mater. Res. 586, 126-129. https://doi.org/10.4028/www.scientific.net/AMR.586.126
Lloyd, R.R.; Provis, J.L.; Van Deventer, J.S.J. (2009) Microscopy and microanalysis of inorganic polymer cements. 1: Remnant fly ash particles. J. Mater. Sci. 44[2], 608-619. https://doi.org/10.1007/s10853-008-3077-0
Chen, A.; Zhang, J. (2019) Strength and Deformation Characteristics of Silty Sand improved by Gravel. KSCE J. Civ. Eng. 23, 525-533. https://doi.org/10.1007/s12205-018-1047-x
Sarmadi, M.S.; Zohrevand, P.; Rezae, M. (2019) Effect of kerosene contamination on the physical and mechanical properties of sandy soil. Innov. Infrastruct. Solut. 4[1], 7. https://doi.org/10.1007/s41062-019-0196-1
Lee, W.K.W.; Van Deventer, J.S.J. (2002) The effect of ionic contaminants on the early-age properties of alkali-activated fly ash-based cements. Cem. Concr. Res. 32[4], 577-584. https://doi.org/10.1016/S0008-8846(01)00724-4
Chindaprasirt, P.; Phoo-ngernkham, T.; Hanjitsuwan, S.; Horpibulsuk, S.; Poowancum, A.; Injorhor, B. (2018) Effect of calcium-rich compounds on setting time and strength development of alkali-activated fly ash cured at ambient temperature. Case Stud. Constr. Mater. 9, e00198. https://doi.org/10.1016/j.cscm.2018.e00198
Al-Mukhtar, M.; Khattab, S.; Alcover, J.F. (2012) Microstructure and geotechnical properties of lime-treated expansive clayey soil. Eng. Geol. 139-140, 17-27 . https://doi.org/10.1016/j.enggeo.2012.04.004
Muntohar, A.S. (2011) Engineering characteristics of the compressed-stabilized earth brick. Constr. Build. Mater. 25[11], 4215-4220. https://doi.org/10.1016/j.conbuildmat.2011.04.061
Mandal, T.; Edil, T.B.; Tinjum, J.M. (2018) Study on flexural strength, modulus, and fatigue cracking of cementitiously stabilised materials. Road Mater. Pavement Des. 19[7], 1546-1562. https://doi.org/10.1080/14680629.2017.1325772
Kamon, M.; Gu, H.; Katsumi, T. (1999) Engineering Properties of Soil Stabilized by Ferum Lime and Use for the Application of Road Base. Soils Found. 39[1], 31-41. https://doi.org/10.3208/sandf.39.31
Nogami Shuji, J.; Villibor Fadul, D. (1995) Pavimentação de Baixo Custo com Solos Lateríticos (1a PARTE) Sao Paulo-SP-Brasil. 240 pp. Ed. Villibor.
Jiménez Rojas, J.W.; Consoli, N.C.; Heineck, K.S. (2008) Durabilidad de un suelo contaminado y tratado con cemento portland. Rev. Ing. Construcción. 23[3], 163-170. https://scielo.conicyt.cl/pdf/ric/v23n3/art04.pdf
INVIAS. (2013) Capítulo 3 Afirmados subbases y bases. Artículo 350-13 suelo-cemento. https://es.slideshare.net/ vrojas64/350-suelo-cemento-3
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read here the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.