Radioactivity of building materials in Mahallat, Iran – an area exposed to a high level of natural background radiation – attenuation of external radiation doses




Building Material, HNBRA, Radiation assessment, Dose rate, Shielding effect


In this study, mass activity of naturally occurring radioactive materials were measured in twenty-three building material samples, use extensively in the area exposed to a high level of natural background radiation (Mahallat, Iran), to determine the radioactivity index and changes to the level of indoor gamma radiation. The mass activity of 232Th, 226Ra and 40K were within the ranges from 18 ± 3 to 44 ± 10 Bq/kg (average of 27 ± 6 Bq/kg), 22 ± 5 to 53 ± 14 Bq/kg (average of 34 ± 6 Bq/kg) and 82 ± 18 to 428 ± 79 Bq/kg (average of 276 ± 58 Bq/kg), respectively. The gamma dose rates for population were estimated between 48 ± 9 and 111 ± 26 nGy/h with exception of radon exhalation from building materials. Since the air kerma rate in the town varies from 0.8 to 4 μGy/h, the attenuation coefficient was calculated for buildings made of the aforementioned materials. Additionally, the annual gamma radiation doses for inhabitants were calculated based on time spent outdoors and indoors.


Download data is not yet available.


United Nations Scientific Committee on the Effects of Atomic Radiation. (2000) Sources and effects of ionizing radiation. UNSCEAR 2000 report to the General Assembly, with scientific annexes. Volume I: Sources. United Nations Publications. New York, (2000).

The Council of European Union. 2014. Council directive 2013/59/EURATOM. OJEU. L13 [1], 1-73.

Kovács, T.; Szeiler, G.; Fábián, F.; Kardos, R.; Gregorič, A.; Vaupotič, J. (2013) Systematic survey of natural radioactivity of soil in Slovenia. J. Environ. Radioact. 122, 70-78. PMid:23558252

Kardos, R.; Sas, Z.; Hegedűs, M.; Shahrokhi, A.; Somlai, J.; Kovács, T. (2015) Radionuclide content of NORM by-products originating from the coal-fired power plant in Oroszlány (Hungary). Radiat. Prot. Dosim. 167 [1-3], 266-269. PMid:25944954

Aliyu, A.S.; Ramli, A.T. (2015) The world's high background natural radiation areas (HBNRAs) revisited: A broad overview of the dosimetric, epidemiological and radiobiological issues. Radiat. Meas. 73, 51-59.

International Commission on Radiological Protection. (2007) The 2007 recommendations of the International Commission on Radiological Protection. Annals of the ICRP. 103.

Shetty, P.K.; Narayana, Y. (2010) Variation of radiation level and radionuclide enrichment in high background area. J. Environ. Radioact. 101 [12], 1043-1047. PMid:20833457

Mortazavi, S.M.J.; Mozdarani, H. (2012) Is it time to shed some light on the black box of health policies regarding the inhabitants of the high background radiation areas of Ramsar? Iran J. Radiat. Res. 10 [3-4], 111-116.

Sohrabi, M.M.; Beitollahi, M.M.; Lasemi, Y.; Amin, S.E. (1996) Origin of a new high level natural radiation area in hot spring region of Mahallat, Central Iran. In Proceedings of the 4 th International Conference on High Levels of Natural Radiation. Vienna, (1996).

The Council of European Union. (1999) Radiation Protection 112: Radiological Protection Principles Concerning the Natural Radioactivity of Building Materials. Directorate-General, Environment, Nuclear Safety and Civil Protection. 5-16.

Nuccetelli, C.; Leonardi, F.; Trevisi, R. (2015) A new accurate and flexible index to assess the contribution of building materials to indoor gamma exposure. J. Environ. Radioact. 143, 70-75. PMid:25743410

Karam, P.A. (2002) The high background radiation area in Ramsar Iran: Geology, Norm, Biology, LNT, and possible regulatory fun. University of Rochester. Rochester, NY, (2002).

Ghiassi-Nejad, M.; Mortazavi, S.M.J.; Cameron, J.R.; Niroomand-Rad, A.; Karam, P.A. (2002) Very high background radiation areas of Ramsar, Iran: preliminary biological studies. Health physics. 82 [1], 87-93. PMid:11769138

Hendry, J.H.; Simon, S.L.; Wojcik, A.; Sohrabi, M.; Burkart, W.; Cardis, E.; Laurier, D.; Tirmarche, M.; Hayata, I. (2009) Human exposure to high natural background radiation: what can it teach us about radiation risks?. J. Radiol. Prot. 29 [2A], A29. PMid:19454802 PMCid:PMC4030667

Jayanthi, D.D.; Maniyan, C.G.; Perumal, S. (2011) Assessment of indoor radiation dose received by the residents of natural high background radiation areas of coastal villages of Kanyakumari district, Tamil Nadu, India. Radiat. Phys. Chem. 80 [7], 782-785.

Bavarnegin, E.; Fathabadi, N.; Moghaddam, M.V.; Farahani, M.V.; Moradi, M.; Babakhni, A. (2013) Radon exhalation rate and natural radionuclide content in building materials of high background areas of Ramsar, Iran. J. Environ. Radioact. 117, 36-40. PMid:22280998

Sohrabi, M. (2013) World high background natural radiation areas: Need to protect public from radiation exposure. Radiat. Meas. 50, 166-171.

Sahoo, S.K.; Žunić, Z.S.; Kritsananuwat, R.; Zagrodzki, P.; Bossew, P.; Veselinovic, N.; Mishra, S.; Yonehara, H.; Tokonami, S. (2015) Distribution of uranium, thorium and some stable trace and toxic elements in human hair and nails in Niška Banja Town, a high natural background radiation area of Serbia (Balkan Region, South-East Europe). J. Environ. Radioact. 145, 66-77. PMid:25875006

Mubarak, F.; Fayez-Hassan, M.; Mansour, N.A.; Ahmed, T.S.; Ali, A. (2017) Radiological Investigation of High Background Radiation Areas. Sci. Rep. 7, 15223. PMid:29123148 PMCid:PMC5680266

Pérez, M.; Chávez, E.; Echeverría, M.; Córdova, R.; Recalde, C. (2018) Assessment of natural background radiation in one of the highest regions of Ecuador. Radiat. Phys. Chem. 146, 73-76.

Okeyode, I.C.; Oladotun, I.C.; Alatise, O.O.; Bada, B.S.; Makinde, V.; Akinboro, F.G.; Mustapha, A.O.; Al-Azmi, D. (2019) Indoor gamma dose rates in the high background radiation area of Abeokuta, South Western Nigeria. J. Radiat. Res. Appl. Sci. 12 [1], 72-77.

Bé, M.-M.; Chechev, V.P.; Dersch, R.; Helene, O.A.M.; Helmer, R.G.; et al. (2007) Update of x ray and gamma ray decay data standards for detector calibration and other applications, volume 2: data selection assesment and evaluation procdures. International Atomic Energy Agency. Vienna, (2007).

Shahrokhi, A. (2018) Applicaton of the European basic safety standards directive in underground mines: a comprehensive radioecology study in a Hungarian manganese mine. PhD thesis, Pannon Egyetem. Veszprém, (2019).

Adelikhah, M.; Shahrokhi, A.; Chalupnik, S.; Tóth-Bodrogi, E.; Kovács, T. (2020) High level of natural ionizing radiation at a thermal bath in Dehloran, Iran. Heliyon. 6 [7], e04297. PMid:32642584 PMCid:PMC7334375

Shahrokhi, A.; Szeiler, G.; Rahimi, H.; Kovács, T. (2014) Investigation of natural and anthropogenic radionuclides distribution in arable land soil of south eastern European countries. Int. J. Sci. Engineer. Res. 5 [11], 445-449.

El-Mageed, A.I.A.; Farid, M.E.A.; Saleh, E.E.; Mansour, M.; Mohammed, A.K. (2014) Natural radioactivity and radiological hazards of some building materials of Aden, Yemen. J. Geochem. Explor. 140, 41-45.

Shoeib, M.Y.; Thabayneh, K.M. (2014) Assessment of natural radiation exposure and radon exhalation rate in various samples of Egyptian building materials. J. Radiat. Res. Appl. Sci. 7 [2], 174-181.

Wang, Q.; Song, J.; Li, X.; Yuan, H.; Li, N.; Cao, L. (2015) Environmental radionuclides in a coastal wetland of the Southern Laizhou Bay, China. Mar. Pollut. Bull. 97 [1-2], 506-511. PMid:26028169

Trevisi, R.; Risica, S.; D'Alessandro, M.; Paradiso, D.; Nuccetelli, C. (2012) Natural radioactivity in building materials in the European Union: a database and an estimate of radiological significance. J. Environ. Radioact. 105, 11-20. PMid:22230017

Malanca, A.; Pessina, V.; Dallara, G. (1993) Radionuclide content of building materials and gamma ray dose rates in dwellings of Rio Grande Do Norte, Brazil. Radiat. Prot. Dosim. 48 [2], 199-203.

Dabayneh, K.M. (2007). Radioactivity measurement in different types of fabricated building materials used in Palestine. Arab J. Nuclear Sci. Applic. 40 [3], 208-219.

Lu, X.; Chao, S.; Yang, F. (2014) Determination of natural radioactivity and associated radiation hazard in building materials used in Weinan, China. Radiat. Phys. Chem. 99, 62-67.

Rafique, M.; Rahman, S.U.; Basharat, M.; Aziz, W.; Ahmad, I.; Lone, K.A.; Ahmad, K.; Matiullah, K. A. (2014) Evaluation of excess life time cancer risk from gamma dose rates in Jhelum valley. J. Radiat. Res. Appl. Sci. 7 [1], 29-35.

Taskin, H.; Karavus, M.; Ay, P.; Topuzoglu, A.; Hidiroglu, S.; Karahan, G. (2009) Radionuclide concentrations in soil and lifetime cancer risk due to gamma radioactivity in Kirklareli, Turkey. J. Environ. Radioact. 100 [1], 49-53. PMid:19038480

Sohrabi, M.; Roositalab, J.; Mohammadi, J. (2015) Public effective doses from environmental natural gamma exposures indoors and outdoors in Iran. Radiat. Prot. Dosim. 167 [4], 633-641. PMid:25602079

Shahrokhi, A.; Shokraee, F.; Reza, A.; Rahimi, H. (2015) Health risk assessment of household exposure to indoor radon in association with the dwelling's age. J. Radiat. Protect. Res. 40 [3], 155-161.



How to Cite

Shahrokhi, A., Adelikhah, M., Chalupnik, S., Kocsis, E., Toth-Bodrogi, E., & Kovács, T. (2020). Radioactivity of building materials in Mahallat, Iran – an area exposed to a high level of natural background radiation – attenuation of external radiation doses. Materiales De Construcción, 70(340), e233.



Research Articles