Substitution of aggregates by waste foundry sand: effects on physical properties of mortars
DOI:
https://doi.org/10.3989/mc.2021.10320Keywords:
Waste treatment, Pozzolan, Aggregate, Mortar, Compressive strengthAbstract
The substitution of the normalized aggregate by residual foundry sand (WFS) was studied on the physical properties of mortars by means of resistance to compression and capillary absorption tests. The aggregate was replaced by WFS in its natural state (WFS), washed residual foundry sand (WFSW) and heat treated residual foundry sand (WFST). The WFS had a percentage of bentonite, which was sought to be thermally activated. It was found that the physical behavior of the mortars containing WFS and WFSW was similar to that of the control sample. The clay recovered from the sand washing was evaluated for its pozzolanic potential, it was found that, with the thermal treatment, the montmorillonite acquires pozzolanic behavior. Mortars with WFST presented a drop in compressive strength. The pozzolanic effect achieved in the clay was not reflected in the compressive strength of the mortars with WFST.
Downloads
References
Bhardwaj, B.; Kumar, P. (2017) Waste foundry sand in concrete: A review. Constr. Build. Mat. 156, 661-674. https://doi.org/10.1016/j.conbuildmat.2017.09.010
Tiwari, A.; Singh, S.; Nagar, R. (2016) Feasibility assessment for partial replacement of fine aggregate to attain cleaner production perspective in concrete: A review. J. Clean. Prod. 135, 490-507. https://doi.org/10.1016/j.jclepro.2016.06.130
Verian, K.P.; Ashraf, W.; Cao, Y. (2018) Properties of recycled concrete aggregate and their influence in new concrete production. Resour. Conserv. Recy. 133, 30-49. https://doi.org/10.1016/j.resconrec.2018.02.005
Serrano Guzmán, M.F.; Ruiz, D.D.P. (2011) Concreto preparado con residuos industriales: resultado de alianza empresa universidad. Rev. Edu. Ing. 6 [11], 1-11. Retrieved from http://www.educacioneningenieria.org/index.php/edi/article/view/116.
Dash, M.K.; Patro, S.K.; Rath, A.K. (2016) Sustainable use of industrial-waste as partial replacement of fine aggregate for preparation of concrete - A review. Int. J. Sustain. Built Environ. 5 [2], 484-516. https://doi.org/10.1016/j.ijsbe.2016.04.006
Basar, H.M.; Deveci Aksoy, N. (2012) The effect of waste foundry sand ( WFS ) as partial replacement of sand on the mechanical, leaching and micro-structural characteristics of ready-mixed concrete. Constr. Build. Mat. 35, 508-515. https://doi.org/10.1016/j.conbuildmat.2012.04.078
Ganesh Prabhu, G.; Hyun, J.H.; Kim, Y.Y. (2014) Effects of foundry sand as a fine aggregate in concrete production. Constr. Build. Mat. 70, 514-521. https://doi.org/10.1016/j.conbuildmat.2014.07.070
Fiore, S.; Zanetti, M.C.; Duca, C. (2007) Foundry wastes reuse and recycling in concrete production. Am. J. Environ. Sci. 3 [3], 135-142. https://doi.org/10.3844/ajessp.2007.135.142
Siddique, R.; Aggarwal, Y.; Aggarwal, P.; Kadri, E.H.; Bennacer, R. (2011) Strength, durability, and micro-structural properties of concrete made with used-foundry sand (UFS) Constr. Build. Mat. 25 [4], 1916-1925. https://doi.org/10.1016/j.conbuildmat.2010.11.065
Aggarwal, Y.; Siddique, R. (2014) Microstructure and properties of concrete using bottom ash and waste foundry sand as partial replacement of fine aggregates. Constr. Build. Mat. 54, 210-223. https://doi.org/10.1016/j.conbuildmat.2013.12.051
Naik, B.T.R. (1994) Utilization of used foundry sand in concrete. J. Mater. Civ. 6 [2], 254-263. https://doi.org/10.1061/(ASCE)0899-1561(1994)6:2(254)
Naik, F. (2012) Effects of fly ash and foundry sand on performance of architectural precast concrete. J. Mater. Civ. Eng. 24, 851-859. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000432
Guney, Y.; Sari, Y.D.; Yalcin, M.; Tuncan, A.; Donmez, S. (2010) Re-usage of waste foundry sand in high-strength concrete. J. Waste Manag. 30 [8-9], 1705-1713. https://doi.org/10.1016/j.wasman.2010.02.018 PMid:20219339
Singh, G.; Siddique, R. (2012) Effect of waste foundry sand (WFS) as partial replacement of sand on the strength , ultrasonic pulse velocity and permeability of concrete. Constr. Build. Mat. 26 [1], 416-422. https://doi.org/10.1016/j.conbuildmat.2011.06.041
Prabhu, G.G.; Bang, J.W.; Lee, B.J.; Hyun, J.H.; Kim, Y. Y. (2015) Mechanical and durability properties of concrete made with used foundry sand as fine aggregate. Adv. Mater. Sci. Eng. 2015. https://doi.org/10.1155/2015/161753
Etxeberria, M.; Pacheco, C.; Meneses, J.M.; Berridi, I. (2010) Properties of concrete using metallurgical industrial by-products as aggregates. Constr. Build. Mat. 24 [9], 1594-1600. https://doi.org/10.1016/j.conbuildmat.2010.02.034
Sahmaran, M.; Lachemi, M.; Erdem, T.K.; Yu, H.E. (2011) Use of spent foundry sand and fly ash for the development of green self-consolidating concrete. Mater. Struct. 44, 1193-1204. https://doi.org/10.1617/s11527-010-9692-7
Singh, G.; Siddique, R. (2012) Abrasion resistance and strength properties of concrete containing waste foundry sand (WFS) Constr. Build. Mat. 28 [1], 421-426. https://doi.org/10.1016/j.conbuildmat.2011.08.087
Khatib, J.M.; Herki, B.A.; Kenai, S. (2013) Capillarity of concrete incorporating waste foundry sand. Constr. Build. Mat. 47, 867-871. https://doi.org/10.1016/j.conbuildmat.2013.05.013
Grim, R.E.; Guven, N. (1978) Bentonitas: geología, mineralogía, propiedades y usos, Elsevier Scientific, Nueva York, (1978).
Largo, P. (2013) Caracterización y activación química de arcilla tipo bentonita para su evaluación en la efectividad de remoción de fenoles presentes en aguas residuales. Tecnologica de Pereira.
Tironi, A.; Trezza, M.; Irassar, E.; Scian, A. (2012) Activación térmica de bentonitas para su utilización como puzolanas. Rev. Constr. 11 [1], 44-53. https://doi.org/10.4067/S0718-915X2012000100005
Schulze, S.E.; Rickert, J. (2018) Suitability of natural calcined clays as supplementary cementitious material. Cem. Concr. Compos, 95, 92-97. https://doi.org/10.1016/j.cemconcomp.2018.07.006
He, C.; Osbaeck, B.; Makovicky, E. (1995) Pozzolanic reactions of six principal clay minerals: Activation, reactivity assessments and technological effects. Cem. Concr. Res. 25 [8], 1691-1702. https://doi.org/10.1016/0008-8846(95)00165-4
Mohammed, S. (2017) Processing, effect and reactivity assessment of artificial pozzolans obtained from clays and clay wastes: A review. Constr. Build. Mat. 140, 10-19. https://doi.org/10.1016/j.conbuildmat.2017.02.078
Taylor, H.F.W. (1990) Cement Chemistry, Academia Press, Inc. New York, (1990).
Mendoza, O.; Tobón, J.I. (2013) An alternative thermal method for identification of pozzolanic activity in Ca(OH)2/pozzolan pastes. J. Therm. Anal. Calorim. 114 [2], 589-596. https://doi.org/10.1007/s10973-013-2973-y
Amahjour, F.; Payá, J.; Monzó, J.; Borrachero, M.V.; Peris-Mora, E. (2000) Mechanical treatment of fly ashes - Part IV. Strength development of ground fly ash-cement mortars cured at different temperatures. Cem. Concr. Res. 30 [4], 543-551. https://doi.org/10.1016/S0008-8846(00)00218-0
Abrego, F. (2012) UNNOBA (Universidad Noreste Buenos Aires) Capacidad De Intercambio Catiónico Cic, 25.
Talero, R. (1996) Comparative XRD analysis ettringite originating from Pozzolan and from Portland cement. Cem. Concr. Res. 26 [8], 1277-1283. https://doi.org/10.1016/0008-8846(96)00092-0
Ramachandran, V.S.; Paroli, R.M.; Beaudoin, J.J.; Delgado, A.H. (2002) Handbook of thermal analysis of construction materials,William Andrew Publishing, New York, U.S.A. https://doi.org/10.1016/B978-081551487-9.50017-7
Henao, N. (2017) Morteros de cemento con altos contenidos de nano hierro. Universidad Politécnica de Madrid.
Trochez, J.J.; Agredo, J.T. (2010) Estudio de la hidratación de pastas de cemento adicionadas con catalizador de craqueo catalítico usado ( FCC ) de una refinería colombiana. Rev. Fac. Ing. Univ. Antioquia. 55, 26-34. https://revistas.udea.edu.co/index.php/ingenieria/article/view/14678/12833.
Siddique, R.; Schutter, G.; Noumowe, A. (2009) Effect of used-foundry sand on the mechanical properties of concrete. Constr. Build. Mat. 23 [2], 976-980. https://doi.org/10.1016/j.conbuildmat.2008.05.005
Manoharan, T.; Laksmanan, D.; Mylsamy, K.; Sivakumar, P.; Sircar, A. (2018) Engineering properties of concrete with partial utilization of used foundry sand. J. Waste Manag. 71, 454-460. https://doi.org/10.1016/j.wasman.2017.10.022 PMid:29103896
Vargas, P.; Restrepo-Baena, O.; Tobón, J.I. (2017) Microstructural analysis of interfacial transition zone (ITZ) and its impact on the compressive strength of lightweight concretes. Constr. Build. Mat. 137, 381-389. https://doi.org/10.1016/j.conbuildmat.2017.01.101
Howland, J.J.; Martín, A.R. (2013) Study about the capillary absorption and the sorptivity of concretes with cuban limestone aggregates. Mater. Construcc. 63 [312], 515-527. https://doi.org/10.3989/mc.2013.04812
Tobón, J.I.; Payá, J.; Restrepo, O.J. (2015) Study of durability of Portland cement mortars blended with silica nanoparticles. Constr. Build. Mat. 80, 92-97. https://doi.org/10.1016/j.conbuildmat.2014.12.074
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.