Influence of fly ash, glass fibers and wastewater on production of recycled aggregate concrete




Recycled aggregate concrete, Fly ash, Wastewater, Compressive strength, Chloride penetration


To encounter the issues of waste materials, low tensile strength of concrete and environmental impacts of cement production, research is needed to develop a sustainable concrete. This study has endeavored to investigate the effects of using recycled coarse aggregates (RCA), various types of wastewater effluents, fly ash, and glass fibers on the mechanical and durability behavior of recycled aggregate concrete (RAC) incorporating with fly ash and glass fibers (FGRAC). Six different kinds of wastewater effluents for the mixing of concrete, 100% replacing the natural coarse aggregates with RCA, and 30% replacement of cement with fly ash were used for the development of concrete. The experimental measurement portrayed that the textile factory effluent presented the highest compressive and tensile strengths of concrete. Fertilizer factory effluent portrayed the highest water absorption, mass loss due to acid attack, and chloride penetration to concrete.


Download data is not yet available.


McGinnis, M.; Davis, M.; de la Rosa, A.; Weldon, B.D.; Kurama, Y.C. (2017) Quantified sustainability of recycled concrete aggregates. Mag. Concr. Res. 69 [23], 1203-1211.

Coelho, A.; De Brito, J. (2012) Influence of construction and demolition waste management on the environmental impact of buildings. Wast. Manag. 32 [3], 532-541. PMid:22182407

Azúa, G.; González, M.; Arroyo, P.; Kurama, Y. (2019) Recycled coarse aggregates from precast plant and building demolitions: Environmental and economic modeling through stochastic simulations. J. Clean. Prod. 210, 1425-1434.

Xiao J.; Chunhui, W.; Ding, T.; Akbarnezhad A. (2018) A recycled aggregate concrete high-rise building: structural performance and embodied carbon footprint. J. Clean. Prod. 199, 868-81.

Silva, R.V; De Brito, J.; Dhir, R.K. (2018) Fresh-state performance of recycled aggregate concrete: A review. Construc. Build. Mat. 178, 19-31.

Ozbakkaloglu, T.; Gholampour, A. (2018) Time-dependent and long-term mechanical properties of concretes incorporating different grades of coarse recycled concrete aggregates. Eng. Struct. 157, 224-234.

More, A.B.; Ghodake, R.B.; Nimbalkar, H.N.; Chandake, P.P., Maniyar, S.P.; Narute, Y.D. (2014) Reuse of treated domestic wastewater in concrete - a sustainable approach. Ind. J. of Appl. Res. 4 [4], 182 - 184. Retrieved from

Al-Jabri, K.S.; Al-Saidy, A.H.; Taha, R; Al-Kemyani, A.J. (2011) Effect of using wastewater on the properties of high strength concrete. Proc. Eng. 14, 370-376.

Nishida, T.; Otsuki, N.; Ohara, H.; Garba, Z.; Nagata, T. (2013) Some considerations for the applicability of sea water as mixing water in concrete. In: 3rd Inter. Conf. Sust. Const. Mat. Tech., Japan. Retrieved from

Hassani, M.S.; Asadollahfardi, G.; Saghravani, S.F.; Jafari, S.; Peighambarzadeh, F.S. (2020) The difference in chloride ion diffusion coefficient of concrete made with drinking water and wastewater. Construc. Build. Mat. 231, 117182.

Verian, K.P.; Ashraf, W.; Cao, Y. (2018) Properties of recycled concrete aggregate and their influence in new concrete production. Res. Cons. Rec. 133, 30-49.

Kisku, N.; Joshi, H.; Ansari, M.; Panda, S.K.; Nayak, S.; Dutta, S.C. (2017) A critical review and assessment for usage of recycled aggregate as sustainable construction material. Construc. Build. Mat. 131, 721-740.

Xiao, J.; Li, W.; Fan, Y.; Huang, X. (2012) An overview of study on recycled aggregate concrete in China (1996-2011). Construc. Build. Mat. 31, 364-383.

González-Taboada, I.; González-Fonteboa, B.; Martínez-Abella, F.; Carro-López, D. (2016) Study of recycled concrete aggregate quality and its relationship with recycled concrete compressive strength using database analysis. Mater. Construcc. 66 [323], e089.

McNeil, K.; Kang, T.H.-K. (2013) Recycled concrete aggregates: A review. Int. J. Conc. Struc. Mat. 7, 61-69.

Rahal, K. (2007) Mechanical properties of concrete with recycled coarse aggregate. Buil. Env. 42 [1], 407-415.

Dabhade, A.; Choudhari, S.; Gajbhiye, A. (2012) Performance evaluation of recycled aggregate used in concrete. Int. J. Eng. Res. App. 2 [4], 1387-1391.

Etxeberria, M.; Vázquez, E.; Marí, A.; Barra, M. (2007) Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete. Cem. Conc. Res. 37 [5], 735-742.

Mukharjee, B.B.; Barai, S.V. (2014) Influence of nano-silica on the properties of recycled aggregate concrete. Construc. Build. Mat. 55, 29-37.

Li, W.; Xiao, J.; Sun, Z.; Kawashima, S.; Shah, S.P. (2012) Interfacial transition zones in recycled aggregate concrete with different mixing approaches. Construc. Build. Mat. 35, 1045-1055.

Huda, S.B.; Shahria Alam, M. (2015) Mechanical and freeze-thaw durability properties of recycled aggregate concrete made with recycled coarse aggregate. J. Mat. Civ. Eng. 27 [10], 04015003.

Duan, Z.H.; Poon, C.S. (2014) Properties of recycled aggregate concrete made with recycled aggregates with different amounts of old adhered mortars. Mat. Des. 58, 19-29.

González-Fonteboa, B.; Seara-Paz, S.; De Brito, J.; González-Taboada, I.; Martínez-Abella, F.; Vasco-Silva, R. (2018) Recycled concrete with coarse recycled aggregate. An overview and analysis. Mater. Construcc. 68 [330], e151.

Rattanachu, P; Karntong, I; Tangchirapat, W; Jaturapitakkul, C; Chindaprasirt, P. (2018) Influence of bagasse ash and recycled concrete aggregate on hardened properties of high-strength concrete. Mater. Construcc. 68 [330], e158.

Sánchez Roldán, Z.; Valverde Palacios, I.; Valverde Espinosa, I.; Martín-Morales, M. (2020) Microstructural analysis of concretes manufactured with recycled coarse aggregates pre-soaked using different methods. Mater. Construcc. 70 [339], e228.

Shekarchi, M.; Yazdian, M.; Mehrdadi, N. (2012) Use of biologically treated domestic waste water in concrete. Kuw. Jour. Sci. Eng. 39 [2B], 97 - 111. Retrieved from

Asadollahfardi, G.; Asadi, M.; Jafari, H.; Moradi, A.; Asadolllahfardi, R. (2015) Experimental and statistical studies of using wash water from ready-mix concrete trucks and a batching plant in the production of fresh concrete. Constr. Build. Mater. 98, 305-314.

Asadollahfardi, G.; Tahmasabi, G.; Nabi, S.M.; Pouresfandyani, H.; Hossieni, S.A.A. (2017) Effects of using concrete wash water on a few characteristics of new concrete. Envir. Eng. Manag. J. 16 [7], 1569-1575.

Wasserman, B. (2012) Wash water with the mix: effects on the compressive strength of concrete. Int. J. Constr. Ed. Res. 8 [4], 301-316.

Nikhil, T.R.; Sushma, R.; Gopinath, S.M.; Shanthappa, B.C. (2014) Impact of water quality on strength properties of concrete. Indian J. Appl. Res. 3 [7], 197-199. Retrieved from

Rabie, G.; Hisham A.E.; Rozaik, E.H. (2019) Influence of using dry and wet wastewater sludge in concrete mix on its physical and mechanical properties. Ain Sham. Eng. J. 10 [4], 705-712.

Roychand, R.; Pramanik. B.K.; Zhang, G.; Setunge S. (2020) Recycling steel slag from municipal wastewater treatment plants into concrete applications - A step towards circular economy. Res. Cons. Rec. 152, 104533.

Saxena, S.; Tembhurkar, A.R. (2019) Developing biotechnological technique for reuse of wastewater and steel slag in bio-concrete. J. Clean. Prod. 229, 193-202.

Kou, S.; Poon, C.; Agrela, F. (2011) Comparisons of natural and recycled aggregate concretes prepared with the addition of different mineral admixtures. Cem. Conc. Comp. 33 [8], 788-795.

Kurda, R, de Brito, J.; Silvestre, J.D. (2019) Water absorption and electrical resistivity of concrete with recycled concrete aggregates and fly ash. Cem. Conc. Comp. 95, 169-182.

Kurda, R.; de Brito, J.; Silvestre, J.D. (2017) Influence of recycled aggregates and high contents of fly ash on concrete fresh properties. Cem. Conc. Comp. 84, 198-213.

Kurda, R.; de Brito, J.; J.D. Silvestre, (2018) Indirect evaluation of the compressive strength of recycled aggregate concrete with high fly ash ratios. Mag. Concr. Res. 70 [4], 204-216.

Kurda, R; Silvestre, J.D.; de Brito, J; Ahmed, H.(2018) Optimizing recycled concrete containing high volume of fly ash in terms of the embodied energy and chloride ion resistance. J. Clean. Prod. 194, 735-750.

Rashidian-Dezfouli, H.; Rangaraju, P. (2017) Comparison of strength and durability characteristics of a geopolymer produced from fly ash, ground glass fiber and glass powder. Mater. Construcc. 67 [328], e136.

Mis, H.; Güner, E.D.; Güner, H; Gökçe, N. (2020) A study on industrial-scale waste utilization in construction material production: the use of fly ash in GRP composite pipe. Mater. Construcc. 70 [340], e234.

Kurad, R.; Silvestre, J.D.; de Brito, J.; Ahmed, H. (2017) Effect of incorporation of high volume of recycled concrete aggregates and fly ash on the strength and global warming potential of concrete. J. Clean. Prod. 166, 485-502.

Liu, K.; Yan, J.; Zou, C. (2018) Behaviour of recycled aggregate concrete under combined compression and shear stresses. Mater. Construcc. 68 [331], e162.

Ali, B.; Qureshi, L.A. (2019) Influence of glass fibers on mechanical and durability performance of concrete with recycled aggregates. Construc. Build. Mat. 228, 116783.

Ali, B.; Qureshi, L.A.; Shah, S.H.A.; Rehman, S.U.; Hussain, I.; Iqbal, M. (2020) A step towards durable, ductile and sustainable concrete: Simultaneous incorporation of recycled aggregates, glass fiber and fly ash. Construc. Build. Mat. 251, 118980.

Koushkbaghi, M.; Kazemi, M.J.; Mosavi, H.; Mohseni, E. (2019) Acid resistance and durability properties of steel fiber-reinforced concrete incorporating rice husk ash and recycled aggregate. Construc. Build. Mat. 202, 266-275.

Santillán, L.R.; Locati, F.; Villagrán-Zaccardi, Y.A.; Zega, C.J. (2020) Long-term sulfate attack on recycled aggregate concrete immersed in sodium sulfate solution for 10 years. Mater. Construcc. 70 [337], e212.

Zhang, Y.; Yan, L.; Wang, S.; Xu, M. (2019) Impact of twisting high-performance polyethylene fibre bundle reinforcements on the mechanical characteristics of high-strength concrete. Mater. Construcc. 69 [334], e184.

Alberti, M.G.; Enfedaque, A.; Gálvez, J.C.; Picazo, A. (2020) Recent advances in structural fibre-reinforced concrete focused on polyolefin-based macro-synthetic fibres. Mater. Construcc. 70 [337], e206.

Xie, J.; Huang, L.; Guo, Y.; Li, Z.; Fang, C.; Li, L.; Wang, J. (2018) Experimental study on the compressive and flexural behaviour of recycled aggregate concrete modified with silica fume and fibres. Construc. Build. Mat. 178, 612-623.

ASTM-C150/C150M-18, Standard specification for Portland cement, ASTM International, West Conshohocken, PA. 2018. Retrieved from

ASTMC33/C33M-18, Standard specification for concrete aggregates, ASTM International, West Conshohocken, PA. 2018. Retrieved from

Bian, J.; Cao, W.; Zhang, Z.; Qiao, Q. (2020) Cyclic loading tests of thin-walled square steel tube beam-column joint with different joint details. Structures. 25, 386-397.

Yang, J.; Guo, T.; Chai, S. (2020) Experimental and numerical investigation on seismic behaviours of beam-column joints of precast prestressed concrete frame under given corrosion levels. 2020. Structures, 27, 1209-1221.

Attari, N.; Youcef, Y.S.; Amziane, S. (2019) Seismic performance of reinforced concrete beam-column joint strengthening by frp sheets. Structures. 20, 353-364.

Hu, Y.; Zhao, J.; Zhang, D.; Li, Y. (2020) Cyclic performance of concrete-filled double-skin steel tube frames strengthened with beam-only-connected composite steel plate shear walls. J. Build. Eng. 31, 101376.

Won, D.; Lee, J.; Seo, J.; Kang, Y.J.; Kim, S. (2020) Hysteretic performance of column-footing joints with steel composite hollow RC columns under cyclic load. J. Build. Eng. 29, 101165.

Xue, Y.; Yang, Y.; Yu, Y. (2020) Pseudostatic testing for load-carrying capacity of precast concrete-encased steel composite columns. J. Build. Eng. 29, 101189.

González, J.G.; Robles, D.R.; Valdés, A.J.; Morán del Pozo, J.M.; Romero, M. (2013) Influence of moisture states of recycled coarse aggregates on the slump test. Advan. Mater. Res. Trans. Tech. Publ. 72, 379-383.

Elmesalami, N.; Abed, F.; El Refai, A. (2020) Response of concrete columns reinforced with longitudinal and transverse BFRP bars under concentric and eccentric loading. Comp. Struct. 255, 113057.

Al Najmi, L.; Abed, F. (2020) Evaluation of FRP bars under compression and their performance in RC columns. Materials. 13 [20], 4541. PMid:33066128 PMCid:PMC7602021

Tu, J.; Gao, K.; He, L.; Li, X. (2019) Experimental study on the axial compression performance of GFRP-reinforced concrete square columns. Advan. Struct. Eng. 22 [7], 1554-1565.

Chhorn, B.; Jung, W. (2020) Experimental evaluation of the tensile bonding strength of the basalt fiber-reinforced polymer-concrete interface. Advan. Struct. Eng. 23 [15], 3323-3334.

Mehrdadi, N.; Akbarian, A.; Haghollahi, A. (2009) Using domestic treated wastewater for producing and curing concrete. J. Env. Stud. 35(50): p. 129-136.

Gao, X.; Yang, Y.; Deng, H. (2011) Utilization of beet molasses as a grinding aid in blended cements. Construc. Build. Mat. 25 [9], 3782-3789.

Akar, C.; Canbaz, M. (2016) Effect of molasses as an admixture on concrete durability. J. Clean. Prod. 112, 2374-2380.

Ali, B.; Qureshi L.A. (2019) Durability of recycled aggregate concrete modified with sugarcane molasses. Construc. Build. Mat. 229, 116913.

Reddy, V.V.; Rao, S. (2004) Effects of alkalinity present in water on strength and setting properties of fly ash concrete. CI-Premier PTE Ltd Singapore.

Mahasneh, B. (2014) Assessment of replacing wastewater and treated water with tap water in making concrete mix. Elect. J. Geotec. Eng. 19, 2379-2386.

Venkateswara Reddy, V.; Ramana, N.V.; Gnaneswar, K.; Sashidhar, C. (2011) Effect of magnesium chloride (MgCl2) on ordinary Portland cement concrete. Ind. J. Sci. Tech. 4 [6], 643-645. Retrieved from

Kucche, K.J.; Jamkar, S.S.; Sadgir, P.A. (2015) Quality of water for making concrete: A review of literature. Int. J. Sci. Res. Pub. 5 [1], 1-10. Retrieved from

Asadollahfardi, G.; Delnavaz, M.; Rashnoiee, V.; Ghonabadi, N. (2016) Use of treated domestic wastewater before chlorination to produce and cure concrete. Construc. Build. Mat. 105, 253-261.

Seyyedalipour, S.F.; Yousefi Kebria, D.; Dehestani, M. (2015) Effects of recycled paperboard mill wastes on the properties of non-load-bearing concrete. Int. J. Enviro. Sci. Tech. 12, 3627-3634.

De Belie, N.; Verselder, H.J.; De Blaere, B.; Van Nieuwenburg, D.; Verschoore, R. (1996) Influence of the cement type on the resistance of concrete to feed acids. Cem. Conc. Res. 26 [11], 1717-1725.

Pavlik, V.; Unčík, S. (1997) The rate of corrosion of hardened cement pastes and mortars with additive of silica fume in acids. Cem. Conc. Res. 27 [11], 1731-1745.

O'Connell, M.; McNally, C.; Richardson, M.G. (2012) Performance of concrete incorporating GGBS in aggressive wastewater environments. Construc. Build. Mat. 27 [1], 368-374.



How to Cite

Raza, A., Ali, B., Haq, F., Awais, M., & Jameel, M. (2021). Influence of fly ash, glass fibers and wastewater on production of recycled aggregate concrete. Materiales De Construcción, 71(343), e253.



Research Articles