Influence of fly ash, glass fibers and wastewater on production of recycled aggregate concrete
DOI:
https://doi.org/10.3989/mc.2021.15120Keywords:
Recycled aggregate concrete, Fly ash, Wastewater, Compressive strength, Chloride penetrationAbstract
To encounter the issues of waste materials, low tensile strength of concrete and environmental impacts of cement production, research is needed to develop a sustainable concrete. This study has endeavored to investigate the effects of using recycled coarse aggregates (RCA), various types of wastewater effluents, fly ash, and glass fibers on the mechanical and durability behavior of recycled aggregate concrete (RAC) incorporating with fly ash and glass fibers (FGRAC). Six different kinds of wastewater effluents for the mixing of concrete, 100% replacing the natural coarse aggregates with RCA, and 30% replacement of cement with fly ash were used for the development of concrete. The experimental measurement portrayed that the textile factory effluent presented the highest compressive and tensile strengths of concrete. Fertilizer factory effluent portrayed the highest water absorption, mass loss due to acid attack, and chloride penetration to concrete.
Downloads
References
McGinnis, M.; Davis, M.; de la Rosa, A.; Weldon, B.D.; Kurama, Y.C. (2017) Quantified sustainability of recycled concrete aggregates. Mag. Concr. Res. 69 [23], 1203-1211. https://doi.org/10.1680/jmacr.16.00338
Coelho, A.; De Brito, J. (2012) Influence of construction and demolition waste management on the environmental impact of buildings. Wast. Manag. 32 [3], 532-541. https://doi.org/10.1016/j.wasman.2011.11.011 PMid:22182407
Azúa, G.; González, M.; Arroyo, P.; Kurama, Y. (2019) Recycled coarse aggregates from precast plant and building demolitions: Environmental and economic modeling through stochastic simulations. J. Clean. Prod. 210, 1425-1434. https://doi.org/10.1016/j.jclepro.2018.11.049
Xiao J.; Chunhui, W.; Ding, T.; Akbarnezhad A. (2018) A recycled aggregate concrete high-rise building: structural performance and embodied carbon footprint. J. Clean. Prod. 199, 868-81. https://doi.org/10.1016/j.jclepro.2018.07.210
Silva, R.V; De Brito, J.; Dhir, R.K. (2018) Fresh-state performance of recycled aggregate concrete: A review. Construc. Build. Mat. 178, 19-31. https://doi.org/10.1016/j.conbuildmat.2018.05.149
Ozbakkaloglu, T.; Gholampour, A. (2018) Time-dependent and long-term mechanical properties of concretes incorporating different grades of coarse recycled concrete aggregates. Eng. Struct. 157, 224-234. https://doi.org/10.1016/j.engstruct.2017.12.015
More, A.B.; Ghodake, R.B.; Nimbalkar, H.N.; Chandake, P.P., Maniyar, S.P.; Narute, Y.D. (2014) Reuse of treated domestic wastewater in concrete - a sustainable approach. Ind. J. of Appl. Res. 4 [4], 182 - 184. Retrieved from https://www.worldwidejournals.com/indian-journal-of-applied-research-(IJAR)/article/reuse-of-treated-domestic-waste-water-in-concrete-andndash-a-sustainable-approach/MzU0MA==/?is=1. https://doi.org/10.15373/2249555X/APR2014/55
Al-Jabri, K.S.; Al-Saidy, A.H.; Taha, R; Al-Kemyani, A.J. (2011) Effect of using wastewater on the properties of high strength concrete. Proc. Eng. 14, 370-376. https://doi.org/10.1016/j.proeng.2011.07.046
Nishida, T.; Otsuki, N.; Ohara, H.; Garba, Z.; Nagata, T. (2013) Some considerations for the applicability of sea water as mixing water in concrete. In: 3rd Inter. Conf. Sust. Const. Mat. Tech., Japan. Retrieved from http://www.claisse.info/2013%20papers/data/e056.pdf.
Hassani, M.S.; Asadollahfardi, G.; Saghravani, S.F.; Jafari, S.; Peighambarzadeh, F.S. (2020) The difference in chloride ion diffusion coefficient of concrete made with drinking water and wastewater. Construc. Build. Mat. 231, 117182. https://doi.org/10.1016/j.conbuildmat.2019.117182
Verian, K.P.; Ashraf, W.; Cao, Y. (2018) Properties of recycled concrete aggregate and their influence in new concrete production. Res. Cons. Rec. 133, 30-49. https://doi.org/10.1016/j.resconrec.2018.02.005
Kisku, N.; Joshi, H.; Ansari, M.; Panda, S.K.; Nayak, S.; Dutta, S.C. (2017) A critical review and assessment for usage of recycled aggregate as sustainable construction material. Construc. Build. Mat. 131, 721-740. https://doi.org/10.1016/j.conbuildmat.2016.11.029
Xiao, J.; Li, W.; Fan, Y.; Huang, X. (2012) An overview of study on recycled aggregate concrete in China (1996-2011). Construc. Build. Mat. 31, 364-383. https://doi.org/10.1016/j.conbuildmat.2011.12.074
González-Taboada, I.; González-Fonteboa, B.; Martínez-Abella, F.; Carro-López, D. (2016) Study of recycled concrete aggregate quality and its relationship with recycled concrete compressive strength using database analysis. Mater. Construcc. 66 [323], e089. https://doi.org/10.3989/mc.2016.06415
McNeil, K.; Kang, T.H.-K. (2013) Recycled concrete aggregates: A review. Int. J. Conc. Struc. Mat. 7, 61-69. https://doi.org/10.1007/s40069-013-0032-5
Rahal, K. (2007) Mechanical properties of concrete with recycled coarse aggregate. Buil. Env. 42 [1], 407-415. https://doi.org/10.1016/j.buildenv.2005.07.033
Dabhade, A.; Choudhari, S.; Gajbhiye, A. (2012) Performance evaluation of recycled aggregate used in concrete. Int. J. Eng. Res. App. 2 [4], 1387-1391.
Etxeberria, M.; Vázquez, E.; Marí, A.; Barra, M. (2007) Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete. Cem. Conc. Res. 37 [5], 735-742. https://doi.org/10.1016/j.cemconres.2007.02.002
Mukharjee, B.B.; Barai, S.V. (2014) Influence of nano-silica on the properties of recycled aggregate concrete. Construc. Build. Mat. 55, 29-37. https://doi.org/10.1016/j.conbuildmat.2014.01.003
Li, W.; Xiao, J.; Sun, Z.; Kawashima, S.; Shah, S.P. (2012) Interfacial transition zones in recycled aggregate concrete with different mixing approaches. Construc. Build. Mat. 35, 1045-1055. https://doi.org/10.1016/j.conbuildmat.2012.06.022
Huda, S.B.; Shahria Alam, M. (2015) Mechanical and freeze-thaw durability properties of recycled aggregate concrete made with recycled coarse aggregate. J. Mat. Civ. Eng. 27 [10], 04015003. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001237
Duan, Z.H.; Poon, C.S. (2014) Properties of recycled aggregate concrete made with recycled aggregates with different amounts of old adhered mortars. Mat. Des. 58, 19-29. https://doi.org/10.1016/j.matdes.2014.01.044
González-Fonteboa, B.; Seara-Paz, S.; De Brito, J.; González-Taboada, I.; Martínez-Abella, F.; Vasco-Silva, R. (2018) Recycled concrete with coarse recycled aggregate. An overview and analysis. Mater. Construcc. 68 [330], e151. https://doi.org/10.3989/mc.2018.13317
Rattanachu, P; Karntong, I; Tangchirapat, W; Jaturapitakkul, C; Chindaprasirt, P. (2018) Influence of bagasse ash and recycled concrete aggregate on hardened properties of high-strength concrete. Mater. Construcc. 68 [330], e158. https://doi.org/10.3989/mc.2018.04717
Sánchez Roldán, Z.; Valverde Palacios, I.; Valverde Espinosa, I.; Martín-Morales, M. (2020) Microstructural analysis of concretes manufactured with recycled coarse aggregates pre-soaked using different methods. Mater. Construcc. 70 [339], e228. https://doi.org/10.3989/mc.2020.16919
Shekarchi, M.; Yazdian, M.; Mehrdadi, N. (2012) Use of biologically treated domestic waste water in concrete. Kuw. Jour. Sci. Eng. 39 [2B], 97 - 111. Retrieved from http://apc.ku.edu.kw/jer/files/30Jan20131206585-use%20of.pdf.
Asadollahfardi, G.; Asadi, M.; Jafari, H.; Moradi, A.; Asadolllahfardi, R. (2015) Experimental and statistical studies of using wash water from ready-mix concrete trucks and a batching plant in the production of fresh concrete. Constr. Build. Mater. 98, 305-314. https://doi.org/10.1016/j.conbuildmat.2015.08.053
Asadollahfardi, G.; Tahmasabi, G.; Nabi, S.M.; Pouresfandyani, H.; Hossieni, S.A.A. (2017) Effects of using concrete wash water on a few characteristics of new concrete. Envir. Eng. Manag. J. 16 [7], 1569-1575. https://doi.org/10.30638/eemj.2017.170
Wasserman, B. (2012) Wash water with the mix: effects on the compressive strength of concrete. Int. J. Constr. Ed. Res. 8 [4], 301-316. https://doi.org/10.1080/15578771.2011.633974
Nikhil, T.R.; Sushma, R.; Gopinath, S.M.; Shanthappa, B.C. (2014) Impact of water quality on strength properties of concrete. Indian J. Appl. Res. 3 [7], 197-199. Retrieved from https://www.worldwidejournals.com/indian-journal-of-applied-research-(IJAR)/article/impact-of-water-quality-on-strength-properties-of-concrete/NDI0OA==/?is=1&b1=225&k=57.
Rabie, G.; Hisham A.E.; Rozaik, E.H. (2019) Influence of using dry and wet wastewater sludge in concrete mix on its physical and mechanical properties. Ain Sham. Eng. J. 10 [4], 705-712. https://doi.org/10.1016/j.asej.2019.07.008
Roychand, R.; Pramanik. B.K.; Zhang, G.; Setunge S. (2020) Recycling steel slag from municipal wastewater treatment plants into concrete applications - A step towards circular economy. Res. Cons. Rec. 152, 104533. https://doi.org/10.1016/j.resconrec.2019.104533
Saxena, S.; Tembhurkar, A.R. (2019) Developing biotechnological technique for reuse of wastewater and steel slag in bio-concrete. J. Clean. Prod. 229, 193-202. https://doi.org/10.1016/j.jclepro.2019.04.363
Kou, S.; Poon, C.; Agrela, F. (2011) Comparisons of natural and recycled aggregate concretes prepared with the addition of different mineral admixtures. Cem. Conc. Comp. 33 [8], 788-795. https://doi.org/10.1016/j.cemconcomp.2011.05.009
Kurda, R, de Brito, J.; Silvestre, J.D. (2019) Water absorption and electrical resistivity of concrete with recycled concrete aggregates and fly ash. Cem. Conc. Comp. 95, 169-182. https://doi.org/10.1016/j.cemconcomp.2018.10.004
Kurda, R.; de Brito, J.; Silvestre, J.D. (2017) Influence of recycled aggregates and high contents of fly ash on concrete fresh properties. Cem. Conc. Comp. 84, 198-213. https://doi.org/10.1016/j.cemconcomp.2017.09.009
Kurda, R.; de Brito, J.; J.D. Silvestre, (2018) Indirect evaluation of the compressive strength of recycled aggregate concrete with high fly ash ratios. Mag. Concr. Res. 70 [4], 204-216. https://doi.org/10.1680/jmacr.17.00216
Kurda, R; Silvestre, J.D.; de Brito, J; Ahmed, H.(2018) Optimizing recycled concrete containing high volume of fly ash in terms of the embodied energy and chloride ion resistance. J. Clean. Prod. 194, 735-750. https://doi.org/10.1016/j.jclepro.2018.05.177
Rashidian-Dezfouli, H.; Rangaraju, P. (2017) Comparison of strength and durability characteristics of a geopolymer produced from fly ash, ground glass fiber and glass powder. Mater. Construcc. 67 [328], e136. https://doi.org/10.3989/mc.2017.05416
Mis, H.; Güner, E.D.; Güner, H; Gökçe, N. (2020) A study on industrial-scale waste utilization in construction material production: the use of fly ash in GRP composite pipe. Mater. Construcc. 70 [340], e234. https://doi.org/10.3989/mc.2020.12719
Kurad, R.; Silvestre, J.D.; de Brito, J.; Ahmed, H. (2017) Effect of incorporation of high volume of recycled concrete aggregates and fly ash on the strength and global warming potential of concrete. J. Clean. Prod. 166, 485-502. https://doi.org/10.1016/j.jclepro.2017.07.236
Liu, K.; Yan, J.; Zou, C. (2018) Behaviour of recycled aggregate concrete under combined compression and shear stresses. Mater. Construcc. 68 [331], e162. https://doi.org/10.3989/mc.2018.06217
Ali, B.; Qureshi, L.A. (2019) Influence of glass fibers on mechanical and durability performance of concrete with recycled aggregates. Construc. Build. Mat. 228, 116783. https://doi.org/10.1016/j.conbuildmat.2019.116783
Ali, B.; Qureshi, L.A.; Shah, S.H.A.; Rehman, S.U.; Hussain, I.; Iqbal, M. (2020) A step towards durable, ductile and sustainable concrete: Simultaneous incorporation of recycled aggregates, glass fiber and fly ash. Construc. Build. Mat. 251, 118980. https://doi.org/10.1016/j.conbuildmat.2020.118980
Koushkbaghi, M.; Kazemi, M.J.; Mosavi, H.; Mohseni, E. (2019) Acid resistance and durability properties of steel fiber-reinforced concrete incorporating rice husk ash and recycled aggregate. Construc. Build. Mat. 202, 266-275. https://doi.org/10.1016/j.conbuildmat.2018.12.224
Santillán, L.R.; Locati, F.; Villagrán-Zaccardi, Y.A.; Zega, C.J. (2020) Long-term sulfate attack on recycled aggregate concrete immersed in sodium sulfate solution for 10 years. Mater. Construcc. 70 [337], e212. https://doi.org/10.3989/mc.2020.06319
Zhang, Y.; Yan, L.; Wang, S.; Xu, M. (2019) Impact of twisting high-performance polyethylene fibre bundle reinforcements on the mechanical characteristics of high-strength concrete. Mater. Construcc. 69 [334], e184. https://doi.org/10.3989/mc.2019.01418
Alberti, M.G.; Enfedaque, A.; Gálvez, J.C.; Picazo, A. (2020) Recent advances in structural fibre-reinforced concrete focused on polyolefin-based macro-synthetic fibres. Mater. Construcc. 70 [337], e206. https://doi.org/10.3989/mc.2020.12418
Xie, J.; Huang, L.; Guo, Y.; Li, Z.; Fang, C.; Li, L.; Wang, J. (2018) Experimental study on the compressive and flexural behaviour of recycled aggregate concrete modified with silica fume and fibres. Construc. Build. Mat. 178, 612-623. https://doi.org/10.1016/j.conbuildmat.2018.05.136
ASTM-C150/C150M-18, Standard specification for Portland cement, ASTM International, West Conshohocken, PA. 2018. Retrieved from https://www.astm.org/DATABASE.CART/HISTORICAL/C150C150M-18.htm.
ASTMC33/C33M-18, Standard specification for concrete aggregates, ASTM International, West Conshohocken, PA. 2018. Retrieved from https://standards.globalspec.com/std/10290845/astm-c33-c33m.
Bian, J.; Cao, W.; Zhang, Z.; Qiao, Q. (2020) Cyclic loading tests of thin-walled square steel tube beam-column joint with different joint details. Structures. 25, 386-397. https://doi.org/10.1016/j.istruc.2020.03.027
Yang, J.; Guo, T.; Chai, S. (2020) Experimental and numerical investigation on seismic behaviours of beam-column joints of precast prestressed concrete frame under given corrosion levels. 2020. Structures, 27, 1209-1221. https://doi.org/10.1016/j.istruc.2020.07.007
Attari, N.; Youcef, Y.S.; Amziane, S. (2019) Seismic performance of reinforced concrete beam-column joint strengthening by frp sheets. Structures. 20, 353-364. https://doi.org/10.1016/j.istruc.2019.04.007
Hu, Y.; Zhao, J.; Zhang, D.; Li, Y. (2020) Cyclic performance of concrete-filled double-skin steel tube frames strengthened with beam-only-connected composite steel plate shear walls. J. Build. Eng. 31, 101376. https://doi.org/10.1016/j.jobe.2020.101376
Won, D.; Lee, J.; Seo, J.; Kang, Y.J.; Kim, S. (2020) Hysteretic performance of column-footing joints with steel composite hollow RC columns under cyclic load. J. Build. Eng. 29, 101165. https://doi.org/10.1016/j.jobe.2019.101165
Xue, Y.; Yang, Y.; Yu, Y. (2020) Pseudostatic testing for load-carrying capacity of precast concrete-encased steel composite columns. J. Build. Eng. 29, 101189. https://doi.org/10.1016/j.jobe.2020.101189
González, J.G.; Robles, D.R.; Valdés, A.J.; Morán del Pozo, J.M.; Romero, M. (2013) Influence of moisture states of recycled coarse aggregates on the slump test. Advan. Mater. Res. Trans. Tech. Publ. 72, 379-383. https://doi.org/10.4028/www.scientific.net/AMR.742.379
Elmesalami, N.; Abed, F.; El Refai, A. (2020) Response of concrete columns reinforced with longitudinal and transverse BFRP bars under concentric and eccentric loading. Comp. Struct. 255, 113057. https://doi.org/10.1016/j.compstruct.2020.113057
Al Najmi, L.; Abed, F. (2020) Evaluation of FRP bars under compression and their performance in RC columns. Materials. 13 [20], 4541. https://doi.org/10.3390/ma13204541 PMid:33066128 PMCid:PMC7602021
Tu, J.; Gao, K.; He, L.; Li, X. (2019) Experimental study on the axial compression performance of GFRP-reinforced concrete square columns. Advan. Struct. Eng. 22 [7], 1554-1565. https://doi.org/10.1177/1369433218817988
Chhorn, B.; Jung, W. (2020) Experimental evaluation of the tensile bonding strength of the basalt fiber-reinforced polymer-concrete interface. Advan. Struct. Eng. 23 [15], 3323-3334. https://doi.org/10.1177/1369433220934909
Mehrdadi, N.; Akbarian, A.; Haghollahi, A. (2009) Using domestic treated wastewater for producing and curing concrete. J. Env. Stud. 35(50): p. 129-136.
Gao, X.; Yang, Y.; Deng, H. (2011) Utilization of beet molasses as a grinding aid in blended cements. Construc. Build. Mat. 25 [9], 3782-3789. https://doi.org/10.1016/j.conbuildmat.2011.04.041
Akar, C.; Canbaz, M. (2016) Effect of molasses as an admixture on concrete durability. J. Clean. Prod. 112, 2374-2380. https://doi.org/10.1016/j.jclepro.2015.09.081
Ali, B.; Qureshi L.A. (2019) Durability of recycled aggregate concrete modified with sugarcane molasses. Construc. Build. Mat. 229, 116913. https://doi.org/10.1016/j.conbuildmat.2019.116913
Reddy, V.V.; Rao, S. (2004) Effects of alkalinity present in water on strength and setting properties of fly ash concrete. CI-Premier PTE Ltd Singapore.
Mahasneh, B. (2014) Assessment of replacing wastewater and treated water with tap water in making concrete mix. Elect. J. Geotec. Eng. 19, 2379-2386.
Venkateswara Reddy, V.; Ramana, N.V.; Gnaneswar, K.; Sashidhar, C. (2011) Effect of magnesium chloride (MgCl2) on ordinary Portland cement concrete. Ind. J. Sci. Tech. 4 [6], 643-645. Retrieved from https://indjst.org/articles/effect-of-magnesium-chloride-mgcl2-on-ordinary-portland-cement-concrete. https://doi.org/10.17485/ijst/2011/v4i6.2
Kucche, K.J.; Jamkar, S.S.; Sadgir, P.A. (2015) Quality of water for making concrete: A review of literature. Int. J. Sci. Res. Pub. 5 [1], 1-10. Retrieved from http://www.ijsrp.org/research-paper-0115.php?rp=P373551.
Asadollahfardi, G.; Delnavaz, M.; Rashnoiee, V.; Ghonabadi, N. (2016) Use of treated domestic wastewater before chlorination to produce and cure concrete. Construc. Build. Mat. 105, 253-261. https://doi.org/10.1016/j.conbuildmat.2015.12.039
Seyyedalipour, S.F.; Yousefi Kebria, D.; Dehestani, M. (2015) Effects of recycled paperboard mill wastes on the properties of non-load-bearing concrete. Int. J. Enviro. Sci. Tech. 12, 3627-3634. https://doi.org/10.1007/s13762-015-0879-x
De Belie, N.; Verselder, H.J.; De Blaere, B.; Van Nieuwenburg, D.; Verschoore, R. (1996) Influence of the cement type on the resistance of concrete to feed acids. Cem. Conc. Res. 26 [11], 1717-1725. https://doi.org/10.1016/S0008-8846(96)00155-X
Pavlik, V.; Unčík, S. (1997) The rate of corrosion of hardened cement pastes and mortars with additive of silica fume in acids. Cem. Conc. Res. 27 [11], 1731-1745. https://doi.org/10.1016/S0008-8846(97)82702-0
O'Connell, M.; McNally, C.; Richardson, M.G. (2012) Performance of concrete incorporating GGBS in aggressive wastewater environments. Construc. Build. Mat. 27 [1], 368-374. https://doi.org/10.1016/j.conbuildmat.2011.07.036
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.