Study on improving interface bonding performance of magnesium potassium phosphate cement mortar

Authors

  • J. Zhang Jiangsu Key Laboratory Environmental Impact and Structural Safety in Engineering, China University of Mining and Technology, (Xuzhou, Jiangsu, China) / School of Architecture Engineering, Xuzhou College of Industrial Technology, (Xuzhou, Jiangsu, China) https://orcid.org/0000-0003-2618-6563
  • Y. Ji Jiangsu Key Laboratory Environmental Impact and Structural Safety in Engineering, China University of Mining and Technology, (Xuzhou, Jiangsu, China) / State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, (Xuzhou, Jiangsu, China) https://orcid.org/0000-0002-7414-9719
  • Z.  Xu Jiangsu Key Laboratory Environmental Impact and Structural Safety in Engineering, China University of Mining and Technology, (Xuzhou, Jiangsu, China) / State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, (Xuzhou, Jiangsu, China) https://orcid.org/0000-0001-7217-4614
  • Q. Xue Jiangsu Key Laboratory Environmental Impact and Structural Safety in Engineering, China University of Mining and Technology, (Xuzhou, Jiangsu, China) / State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, (Xuzhou, Jiangsu, China) / Jiangsu Collaborative Innovation Center for Building Energy Saving and Construct Technology, (Xuzhou, Jiangsu, China) https://orcid.org/0000-0003-0939-5515
  • Y. Zhou Jiangsu Key Laboratory Environmental Impact and Structural Safety in Engineering, China University of Mining and Technology, (Xuzhou, Jiangsu, China) / State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, (Xuzhou, Jiangsu, China) https://orcid.org/0000-0003-3056-6905
  • C. Jin Jiangsu Key Laboratory Environmental Impact and Structural Safety in Engineering, China University of Mining and Technology, (Xuzhou, Jiangsu, China) https://orcid.org/0000-0003-1655-3892

DOI:

https://doi.org/10.3989/mc.2021.00421

Keywords:

Blended cement, Adherence, Flexural strength, Interstitial zone, Mortar

Abstract


To enhance the interfacial bonding performance between magnesium potassium phosphate cement (MKPC) repair mortar and matrix concrete, in this study, MKPC modified mortar was used as the repair material to splice long prismatic test pieces. The four-point bending test was used to determine the flexural bearing capacity of the long prism, and the influence of changing the interface conditions and the modifying the MKPC repair mortar on the improvement of the basic performance of the splicing component is investigated.The research results show that, when the matrix concrete section is in a natural state, applying silica-fume modified MKPC interface agents on the interface with a repair thickness of 3 cm can improve the interface bonding performance. Furthermore, the working performance and mechanical properties of the MKPC repair mortar modified using nickel-iron slag and steel fibers have been significantly improved.

Downloads

Download data is not yet available.

References

Yuan, F; Pan, J; Xu, Z. (2013) A comparison of engineered cementitious composites versus normal concrete in beam-column joints under reversed cyclic loading. Mat. Struct. 46, 145-159. https://doi.org/10.1617/s11527-012-9890-6

Gou, S; Ding, R; Fan, J.; Nie, X.; Zhang J. (2018) Seismic performance of a novel precast concrete beam-column connection using low-shrinkage engineered cementitious composites. Constr. Build. Mater. 192, 643-656. https://doi.org/10.1016/j.conbuildmat.2018.10.103

Said, S.H.; Razak, H.A. (2016) Structural behavior of RC engineered cementitious composite (ECC) exterior beam-column joints under reversed cyclic loading. Constr. Build. Mater. 107, 226-234. https://doi.org/10.1016/j.conbuildmat.2016.01.001

Qudah, S; Maalej, M. (2014) Application of engineered cementitious composites (ECC) in interior beam-column connections for enhanced seismic resistance. Engi. Struc. 69, 235-245. https://doi.org/10.1016/j.engstruct.2014.03.026

Emmons, P.H.; Vaysburd, A.M. (1996) System concept in design and construction of durable concrete repairs. Constr. Build. Mater. 10 [1], 69-75. https://doi.org/10.1016/0950-0618(95)00065-8

Popovics, S; Rajendran, N; Penko, M. (1987) Rapid hardening cements for repair of concrete. ACI Mater. J. 84 [1], 64-73. https://doi.org/10.14359/9740

Li, V.C.; Maalej, M. (1996) Toughening in cement based composites: Part I. Cement, mortar, and concrete. Cem. Conc. Comp. 18 [4], 223-237. https://doi.org/10.1016/0958-9465(95)00028-3

Mechtcherine, V. (2013) Novel cement-based composites for the strengthening and repair of concrete structures. Constr. Build Mater. 41, 365-373. https://doi.org/10.1016/j.conbuildmat.2012.11.117

Ramakrishna, G; Sundararajan, T. (2005) Impact strength of a few natural fiber reinforced cement mortar slabs: A comparative study. Cem. Conc. Comp. 27 [5], 547-553. https://doi.org/10.1016/j.cemconcomp.2004.09.006

Wagh, A.S.; Singh, D; Jeong, S.Y. (1997) Chemically bonded phosphate ceramics for stabilization and solidification of mixed waste. Hazardous and radioactive waste treatment technologies handbook. 4 [2], 127-139.

Rao, A.J.; Pagilla, K.R.; Wagh, A.S. (2000) Stabilization and solidification of metal-laden wastes by compaction and magnesium phosphate-based binder. J. Air Waste Manag. Assoc. 50 [9], 1623-1631. https://doi.org/10.1080/10473289.2000.10464193 PMid:11055158

Zhang, S; Shi, H.S.; Huang, S.W. (2013) Dehydration characteristics of struvite-K pertaining to magnesium potassium phosphate cement system in non-isothermal condition. J. Ther. Ana. Calo. 111, 35-40. https://doi.org/10.1007/s10973-011-2170-9

Suk-Pyo, K.; Jae-Hwan, K. (2015) Influence of Mixing Factors on the Early-Age Properties of Magnesium Potassium Phosphate Cement Mortar. J. Archi. Ins. Korea Struc. Cons. 31 [5], 61-68. https://doi.org/10.5659/JAIK_SC.2015.31.5.61

Chau, C.K.; Qiao, F; Li, Z. (2011) Microstructure of magnesium potassium phosphate cement. Constr. Build. Mater. 25 [6], 2911-2917. https://doi.org/10.1016/j.conbuildmat.2010.12.035

Ding, Z; Dong, B.; Xing, F; Han, N.; Li, Z. (2012) Cementing mechanism of potassium phosphate based magnesium phosphate cement. Ceram. Int. 38 [8], 6281-6288. https://doi.org/10.1016/j.ceramint.2012.04.083

Ma, H.; Xu, B.; Li, Z. (2014) Magnesium potassium phosphate cement paste: Degree of reaction; porosity and pore structure. Cem. Concr. Res. 65, 96-104. https://doi.org/10.1016/j.cemconres.2014.07.012

Ma, H.; Xu, B.; Liu, J; Pei, H.; Li, Z. (2014) Effects of water content, magnesia-to-phosphate molar ratio and age on pore structure, strength and permeability of magnesium potassium phosphate cement paste. Mater. Design. 64, 497-502. https://doi.org/10.1016/j.matdes.2014.07.073

Mestres, G; Ginebra, M.P. (2011) Novel magnesium phosphate cements with high early strength and antibacterial properties. Acta Biomater. 7 [4], 1853-1861. https://doi.org/10.1016/j.actbio.2010.12.008 PMid:21147277

Li, Y; Shi, T; Chen, B. (2015) Performance of magnesium phosphate cement at elevated temperatures. Constr. Build. Mater. 91, 126-132. https://doi.org/10.1016/j.conbuildmat.2015.05.055

Xing, S.; Wu, C. (2018) Preparation of magnesium phosphate cement and application in concrete repair. MATEC Web Conf. 142, 01012. https://doi.org/10.1051/matecconf/201814202007

Yang, Q.; Zhu, B.; Wu, X. (2000) Characteristics and durability test of magnesium phosphate cement-based material for rapid repair of concrete. Mater. Struc. 33, 229-234. https://doi.org/10.1007/BF02479332

Júlio, E.N.B.S.; Branco, F.A.B.; Silva, V.D. (2004) Concrete-to-concrete bond strength: influence of the roughness of the substrate surface. Constr. Build. Mater. 18 [9], 675-681. https://doi.org/10.1016/j.conbuildmat.2004.04.023

Mu, B.; Meyer, C.; Shimanovich, S. (2002) Improving the interface bond between fiber mesh and cementitious matrix. Cem. Conc. Res. 32 [5], 783-787. https://doi.org/10.1016/S0008-8846(02)00715-9

Martinola, G.; Meda, A.; Plizzari, G.A.; Rinaldi, Z. (2010) Strengthening and repair of RC beams with fiber reinforced concrete. Cem. Conc. Comp. 32 [9], 731-739. https://doi.org/10.1016/j.cemconcomp.2010.07.001

Hongtao, W; Juhui, C. (2007) Study on the setting time of magnesia-phosphate cement. J. Logis. Engin. Univ. 23 [2], 84-87.

Qian, J.; You, C; Wang, Q.; Wang, H.; Jia, X. (2014) A method for assessing bond performance of cement-based repair materials. Constr. Build. Mater. 68, 307-313. https://doi.org/10.1016/j.conbuildmat.2014.06.048

Momayez, A; Ehsani, M.R.; Ramezanianpour, A.A. (2005) Comparison of methods for evaluating bond strength between substrate concrete and repair materials. Cem. Conc. Rese. 35 [4], 748-757. https://doi.org/10.1016/j.cemconres.2004.05.027

Saha, A.K.; Sarker, P.K. (2016) Expansion due to alkali-silica reaction of ferronickel slag fine aggregate in OPC and blended cement mortars. Constr. Build. Mater. 123, 135-142. https://doi.org/10.1016/j.conbuildmat.2016.06.144

Katsiotis, N.S.; Tsakiridis, P.E.; Velissariou, D.; Katsiotis, M.S.; Alhassan, S.M.; Beazi, M. (2015) Utilization of ferronickel slag as additive in Portland cement: A Hydration Leaching Study. Waste Bio. Valor. 6, 177-189. https://doi.org/10.1007/s12649-015-9346-7

Lemonis, N; Tsakiridis, P.E.; Katsiotis, N.S.; Antiohosc, S.; Papageorgiouc, D.; Katsiotisd, M.S.; Beazi-Katsiotia, M. (2015) Hydration study of ternary blended cements containing ferronickel slag and natural pozzolan. Constr. Build. Mater. 81, 130-139. https://doi.org/10.1016/j.conbuildmat.2015.02.046

Güneyisi, E.; Gesoğlu, M.; Karaoğlu, S.; Mermerdaş, K. (2012) Strength, permeability and shrinkage cracking of silica fume and metakaolin concretes. Constr Build. Mater. 34, 120-130. https://doi.org/10.1016/j.conbuildmat.2012.02.017

Nochaiya, T.; Wongkeo, W.; Chaipanich, A. (2010) Utilization of fly ash with silica fume and properties of Portland cement-fly ash-silica fume concrete. Fuel. 89 [3], 768-774. https://doi.org/10.1016/j.fuel.2009.10.003

Nili, M; Afroughsabet, V. (2010) Combined effect of silica fume and steel fibers on the impact resistance and mechanical properties of concrete. Int. J. Impact Engin. 37 [8], 879-886. https://doi.org/10.1016/j.ijimpeng.2010.03.004

Holschemacher, K; Mueller, T; Ribakov, Y. (2010) Effect of steel fibres on mechanical properties of high-strength concrete. Mat. Design. 31 [5], 2604-2615. https://doi.org/10.1016/j.matdes.2009.11.025

Xu, B.W.; Shi, H.S. (2009) Correlations among mechanical properties of steel fiber reinforced concrete. Constr. Build. Mater. 23 [12], 3468-3474. https://doi.org/10.1016/j.conbuildmat.2009.08.017

Zhang, S.; Zhang, C.; Liao, L. (2019) Investigation on the relationship between the steel fibre distribution and the post-cracking behaviour of SFRC. Constr. Build. Mater. 200, 539-550. https://doi.org/10.1016/j.conbuildmat.2018.12.081

Sirisha, K.; Rambabu, T.; Shankar, Y.R.; Ravikumar, P. (2014) Validity of bond strength tests: A critical review: Part I. J. Conserv. Dent. 17 [4], 305-311. https://doi.org/10.4103/0972-0707.136340 PMid:25125840 PMCid:PMC4127686

Zhandarov, S.F.; Mäder, E.; Yurkevich, O.R. (2002) Indirect estimation of fiber/polymer bond strength and interfacial friction from maximum load values recorded in the microbond and pull-out tests. Part I: Local bond strength. J. Adhes. Sci. Technol. 16 [9], 1171-1200. https://doi.org/10.1163/156856102320256837

Zhandarov, S.; Mäder, E. (2016) Determining the interfacial toughness from force-displacement curves in the pull-out and microbond tests using the alternative method. Int. J. Adhes. Adhes. 65, 11-18. https://doi.org/10.1016/j.ijadhadh.2015.10.020

Ahmed, S.F.U.; Mihashi, H. (2007) A review on durability properties of strain hardening fibre reinforced cementitious composites (SHFRCC). Cem. Conc. Comp. 29 [5], 365-376. https://doi.org/10.1016/j.cemconcomp.2006.12.014

Published

2021-08-17

How to Cite

Zhang, J., Ji, Y.,  Xu, Z., Xue, Q., Zhou, Y., & Jin, C. (2021). Study on improving interface bonding performance of magnesium potassium phosphate cement mortar. Materiales De Construcción, 71(343), e255. https://doi.org/10.3989/mc.2021.00421

Issue

Section

Research Articles

Funding data