Evaluation of the influence of the degree of saturation, measuring time and use of a conductive paste on the determination of thermal conductivity of normal and lightweight concrete using the hot-wire method

Authors

DOI:

https://doi.org/10.3989/mc.2021.03621

Keywords:

Concrete, Physical properties, Characterization, Thermal conductivity

Abstract


The determination of thermal conductivity of cement-based materials is relevant from the perspective of buildings’ energy efficiency. The absence of unified tests for its measurement in mortars and concrete results in a heterogeneity of the data available in the literature. This work’s purpose is to determine the relevant influence from a a statistical viewpoint that three factors; degree of saturation, measuring time and use of a conductive paste, have in the measurement of the conductivity using the hot-wire needle probe method in two concretes with different thermal behavior: standard-weight concrete and lightweight concrete. The results obtained allow for the establishment of recommendations for future researchers on the minimum information to be included in their reports of thermal conductivity of cement-based materials by the needle probe method, the need to treat outliers, the most favorable saturation conditions and measuring times, as well as the possible benefits of using conductive pastes.

Downloads

Download data is not yet available.

References

Intergovernmental Panel on Climate Change (2014) Summary for Policymakers. In Climate Change 2013 - The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press,1-30.

Tatro, S. (2006) Chapter 22: Thermal properties, in significance of tests and properties of concrete and concrete-making materials, ed. J. Lamond and J. Pielert. West Conshohocken, PA: ASTM International, 226-237.

Page, J.C.; Harper, S.O., eds. (1940) Thermal properties of concrete. Boulder canyon project final reports. Bulletin 1. Part VII - Cement and concrete investigations. Denver Colorado, United States. Retrieved from https://hdl.handle.net/2027/mdp.39015068182602.

Clarke, J.A.; Yaneske, P.P. (2009) A rational approach to the harmonisation of the thermal properties of building materials. Build. Environ. 44 [10], 2046-2055.

Domínguez-Muñoz, F.; Anderson, B.; Cejudo-López, J.M.; Carrillo-Andrés, A. (2010) Uncertainty in the thermal conductivity of insulation materials. Energy Build. 42 [11], 2159-2168.

Neville, A.M. (2012) Properties of concrete. 5th ed., Pearson Education Limited, Harlow, UK (2012).

Campbell-Allen, D.; Thorne, C.P. (1963) The thermal conductivity of concrete. Mag. Concr. Res. 15 [43], 39-48.

Marshall, A.L. (1972) The thermal properties of concrete. Build. Sci. 7 [3], 167-174.

Tye, R.P.; Spinney, S.C. (1976) Thermal conductivity of concrete: measurement problems and effect of moisture. Technical Report. Cambridge, MA (1976).

Valore, R.C. (1980) Calculations of U-values of hollow concrete masonry. Concr. Int. 2, 40-63.

Arnold, P.J. (1969) Thermal conductivity of masonry materials. Watford, UK (1969).

Valore, R.C.; Tuluca, A.; Caputo, A. (1988) Assessment of the thermal and physical properties of masonry block products. Oak Ridge National Lab., TN (USA); Winter (Steven) Associates, Inc., New York (USA) (1988).

Dusinberre, G.M. (1952) Further analysis of errors of the guarded hot plate. Rev. Sci. Instrum. 23, 649-650.

Hammerschmidt, U. (2002) Guarded hot-plate (GHP) method: uncertainty assessment. Int. J. Thermophys. 23, 1551-1570.

Xamán, J.; Lira, L.; Arce, J. (2009) Analysis of the temperature distribution in a guarded hot plate apparatus for measuring thermal conductivity. Appl. Therm. Eng. 29 [4], 617-623.

dos Santos, W.N. (2008) Advances on the hot wire technique. J. Eur. Ceram. Soc. 28 [1], 15-20.

Haupin, W.E. (1960) Hot wire method for rapid determination of thermal conductivity. Am. Ceram. Soc. Bull. 39, 139-141.

Franco, A. (2007) An apparatus for the routine measurement of thermal conductivity of materials for building application based on a transient hot-wire method. Appl. Therm. Eng. 27 [14-15], 2495-2504.

Coquard, R.; Baillis, D.; Quenard, D. (2006) Experimental and theoretical study of the hot-wire method applied to low-density thermal insulators. Int. J. Heat Mass Transf. 49 [23-24], 4511-4524.

Van Der Held, E.F.M.; Van Drunen, F.G. (1949) A method of measuring the thermal conductivity of liquids. Physica. 15 [10], 865-881.

Zach, J.; Hubertova, M.; Hroudova, J. (2009) Possibilities of determination of thermal conductivity of lightweight concrete with utilization of non stationary hot-wire method. 10th Int. Conf. Slov. Soc. Non-Destructive Test. Ljubljana, SLO. 207-213. Retrieved from https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.161.5880&rep=rep1&type=pdf.

dos Santos, W.N. (2003) Effect of moisture and porosity on the thermal properties of a conventional refractory concrete. J. Eur. Ceram. Soc. 23 [5], 745-755.

Decagon Devices (2016) KD2 Pro thermal properties analyzer. Operator’s manual 68. Retrieved from http://manuals.decagon.com/Manuals/13351_KD2 Pro_Web.pdf.

Demirboğa, R. (2007) Thermal conductivity and compressive strength of concrete incorporation with mineral admixtures. Build. Environ. 42 [7], 2467-2471.

Demirboğa, R.; Gül, R. (2003) The effects of expanded perlite aggregate, silica fume and fly ash on the thermal conductivity of lightweight concrete. Cem. Concr. Res. 33 [5], 723-727.

Uysal, H.; Demirboğa, R.; Şahin, R.; Gül, R. (2004) The effects of different cement dosages, slumps, and pumice aggregate ratios on the thermal conductivity and density of concrete. Cem. Concr. Res. 34 [5], 845-848.

Ünal, O.; Uygunoğlu, T.; Yildiz, A. (2007) Investigation of properties of low-strength lightweight concrete for thermal insulation. Build. Environ. 42 [2], 584-590.

Mun, K.J. (2007) Development and tests of lightweight aggregate using sewage sludge for nonstructural concrete. Constr. Build. Mater. 21 [7], 1583-1588.

Jerman, M.; Keppert, M.; Výborný, J.; Černý, R. (2013) Hygric, thermal and durability properties of autoclaved aerated concrete. Constr. Build. Mater. 41, 352-359.

Collet, F.; Pretot, S. (2014) Thermal conductivity of hemp concretes: Variation with formulation, density and water content. Constr. Build. Mater. 65, 612-619.

Chabannes, M.; Nozahic, V.; Amziane, S. (2015) Design and multi-physical properties of a new insulating concrete using sunflower stem aggregates and eco-friendly binders. Mater. Struct. 48, 1815-1829.

Koçyigit, F.; Kavak Akpinar, E.; Biçer, Y. (2016) Experimental and theoretical study for the determination of thermal conductivity of porous building material made with pumice and tragacanth. J. Adhes. Sci. Technol. 30 [21], 2357-2371.

Seng, B.; Magniont, C.; Lorente, S. (2019) Characterization of a precast hemp concrete. Part I: Physical and thermal properties. J. Build. Eng. 24, 100540.

Shafigh, P.; Asadi, I.; Akhiani, A.R.; Mahyuddin, N.B.; Hashemi, M. (2020) Thermal properties of cement mortar with different mix proportions. Mater. Construcc. 70 [339], e224.

de Oliveira, K.A.; Oliveira, C.A.B.; Molina, J.C. (2021) Lightweight recycled gypsum with residues of expanded polystyrene and cellulose fiber to improve thermal properties of gypsum. Mater. Construcc. 71 [341], e242.

Barbero-Barrera, M.M.; Flores-Medina, N.; Moreno-Fernández, E. (2019) Thermal, physical and mechanical characterization of volcanic tuff masonries for the restoration of historic buildings. Mater. Construcc. 69 [333], e179.

Stoleriu, S.; Vlasceanu, I.N.; Dima, C.; Badanoiu, A.I.; Voicu, G (2019) Alkali activated materials based on glass waste and slag for theral and acoustic insulation. Mater. Construcc. 69 [335], e194.

Abramowitz, M.; Stegun, I.A. (1972) Handbook of mathematical functions, 10th ed. National Bureau of Standards. Washington, D.C. (1972) Retrieved from https://www.pdmi.ras.ru/~lowdimma/BSD/abramowitz_and_stegun.pdf.

Kluitenberg, G.J.; Bristow, K.L.; Das, B.S. (1995) Error analysis of heat pulse method for measuring soil heat capacity, diffusivity, and conductivity. Soil Sci. Soc. Am. J. 59 [3], 719-726.

Demidenko, E. (1987) Mixed models. John Wiley & Sons, Inc., Hoboken, NJ, USA (1987).

Lindsey, J.K. (1993) Models for repeated measurements. Oxford Statistical Science Series, Oxford University Press, New York (1993).

McCulloch; C.E.; Searle, S.R. (2001) Generalized, Linear; Mixed Models, 45. (2001).

Saphiro, S.S.; Wilk, M.B. (1965) An analysis of variance test for normality (complete samples). Biometrika. 52 [3-4], 591-611.

Wilk, M.B.; Gnanadesikan, R. (1968) Probability plotting methods for the analysis of data. Biometrika. 55 [1], 1-17.

Tukey, J.W. (1977) Exploratory data analysis. Addison-Wesley Pub. Co., Reading, Mass. (1977).

IBM Knowledge Center - Default tests of model effects (generalized linear models algorithms)

Published

2021-08-24

How to Cite

Revuelta, D. ., García-Calvo, J. ., Carballosa, P. ., & Pedrosa, F. . (2021). Evaluation of the influence of the degree of saturation, measuring time and use of a conductive paste on the determination of thermal conductivity of normal and lightweight concrete using the hot-wire method. Materiales De Construcción, 71(344), e260. https://doi.org/10.3989/mc.2021.03621

Issue

Section

Research Articles