Evaluation of the influence of the degree of saturation, measuring time and use of a conductive paste on the determination of thermal conductivity of normal and lightweight concrete using the hot-wire method
DOI:
https://doi.org/10.3989/mc.2021.03621Keywords:
Concrete, Physical properties, Characterization, Thermal conductivityAbstract
The determination of thermal conductivity of cement-based materials is relevant from the perspective of buildings’ energy efficiency. The absence of unified tests for its measurement in mortars and concrete results in a heterogeneity of the data available in the literature. This work’s purpose is to determine the relevant influence from a a statistical viewpoint that three factors; degree of saturation, measuring time and use of a conductive paste, have in the measurement of the conductivity using the hot-wire needle probe method in two concretes with different thermal behavior: standard-weight concrete and lightweight concrete. The results obtained allow for the establishment of recommendations for future researchers on the minimum information to be included in their reports of thermal conductivity of cement-based materials by the needle probe method, the need to treat outliers, the most favorable saturation conditions and measuring times, as well as the possible benefits of using conductive pastes.
Downloads
References
Intergovernmental Panel on Climate Change (2014) Summary for Policymakers. In Climate Change 2013 - The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press,1-30. https://doi.org/10.1017/CBO9781107415324.004
Tatro, S. (2006) Chapter 22: Thermal properties, in significance of tests and properties of concrete and concrete-making materials, ed. J. Lamond and J. Pielert. West Conshohocken, PA: ASTM International, 226-237. https://doi.org/10.1520/STP37740S
Page, J.C.; Harper, S.O., eds. (1940) Thermal properties of concrete. Boulder canyon project final reports. Bulletin 1. Part VII - Cement and concrete investigations. Denver Colorado, United States. Retrieved from https://hdl.handle.net/2027/mdp.39015068182602.
Clarke, J.A.; Yaneske, P.P. (2009) A rational approach to the harmonisation of the thermal properties of building materials. Build. Environ. 44 [10], 2046-2055. https://doi.org/10.1016/j.buildenv.2009.02.008
Domínguez-Muñoz, F.; Anderson, B.; Cejudo-López, J.M.; Carrillo-Andrés, A. (2010) Uncertainty in the thermal conductivity of insulation materials. Energy Build. 42 [11], 2159-2168. https://doi.org/10.1016/j.enbuild.2010.07.006
Neville, A.M. (2012) Properties of concrete. 5th ed., Pearson Education Limited, Harlow, UK (2012).
Campbell-Allen, D.; Thorne, C.P. (1963) The thermal conductivity of concrete. Mag. Concr. Res. 15 [43], 39-48. https://doi.org/10.1680/macr.1963.15.43.39
Marshall, A.L. (1972) The thermal properties of concrete. Build. Sci. 7 [3], 167-174. https://doi.org/10.1016/0007-3628(72)90022-9
Tye, R.P.; Spinney, S.C. (1976) Thermal conductivity of concrete: measurement problems and effect of moisture. Technical Report. Cambridge, MA (1976).
Valore, R.C. (1980) Calculations of U-values of hollow concrete masonry. Concr. Int. 2, 40-63.
Arnold, P.J. (1969) Thermal conductivity of masonry materials. Watford, UK (1969).
Valore, R.C.; Tuluca, A.; Caputo, A. (1988) Assessment of the thermal and physical properties of masonry block products. Oak Ridge National Lab., TN (USA); Winter (Steven) Associates, Inc., New York (USA) (1988).
Dusinberre, G.M. (1952) Further analysis of errors of the guarded hot plate. Rev. Sci. Instrum. 23, 649-650. https://doi.org/10.1063/1.1746128
Hammerschmidt, U. (2002) Guarded hot-plate (GHP) method: uncertainty assessment. Int. J. Thermophys. 23, 1551-1570.
Xamán, J.; Lira, L.; Arce, J. (2009) Analysis of the temperature distribution in a guarded hot plate apparatus for measuring thermal conductivity. Appl. Therm. Eng. 29 [4], 617-623. https://doi.org/10.1016/j.applthermaleng.2008.03.033
dos Santos, W.N. (2008) Advances on the hot wire technique. J. Eur. Ceram. Soc. 28 [1], 15-20. https://doi.org/10.1016/j.jeurceramsoc.2007.04.012
Haupin, W.E. (1960) Hot wire method for rapid determination of thermal conductivity. Am. Ceram. Soc. Bull. 39, 139-141.
Franco, A. (2007) An apparatus for the routine measurement of thermal conductivity of materials for building application based on a transient hot-wire method. Appl. Therm. Eng. 27 [14-15], 2495-2504. https://doi.org/10.1016/j.applthermaleng.2007.02.008
Coquard, R.; Baillis, D.; Quenard, D. (2006) Experimental and theoretical study of the hot-wire method applied to low-density thermal insulators. Int. J. Heat Mass Transf. 49 [23-24], 4511-4524. https://doi.org/10.1016/j.ijheatmasstransfer.2006.05.016
Van Der Held, E.F.M.; Van Drunen, F.G. (1949) A method of measuring the thermal conductivity of liquids. Physica. 15 [10], 865-881. https://doi.org/10.1016/0031-8914(49)90129-9
Zach, J.; Hubertova, M.; Hroudova, J. (2009) Possibilities of determination of thermal conductivity of lightweight concrete with utilization of non stationary hot-wire method. 10th Int. Conf. Slov. Soc. Non-Destructive Test. Ljubljana, SLO. 207-213. Retrieved from https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.161.5880&rep=rep1&type=pdf.
dos Santos, W.N. (2003) Effect of moisture and porosity on the thermal properties of a conventional refractory concrete. J. Eur. Ceram. Soc. 23 [5], 745-755. https://doi.org/10.1016/S0955-2219(02)00158-9
Decagon Devices (2016) KD2 Pro thermal properties analyzer. Operator's manual 68. Retrieved from http://manuals.decagon.com/Manuals/13351_KD2 Pro_Web.pdf.
Demirboğa, R. (2007) Thermal conductivity and compressive strength of concrete incorporation with mineral admixtures. Build. Environ. 42 [7], 2467-2471. https://doi.org/10.1016/j.buildenv.2006.06.010
Demirboğa, R.; Gül, R. (2003) The effects of expanded perlite aggregate, silica fume and fly ash on the thermal conductivity of lightweight concrete. Cem. Concr. Res. 33 [5], 723-727. https://doi.org/10.1016/S0008-8846(02)01032-3
Uysal, H.; Demirboğa, R.; Şahin, R.; Gül, R. (2004) The effects of different cement dosages, slumps, and pumice aggregate ratios on the thermal conductivity and density of concrete. Cem. Concr. Res. 34 [5], 845-848. https://doi.org/10.1016/j.cemconres.2003.09.018
Ünal, O.; Uygunoğlu, T.; Yildiz, A. (2007) Investigation of properties of low-strength lightweight concrete for thermal insulation. Build. Environ. 42 [2], 584-590. https://doi.org/10.1016/j.buildenv.2005.09.024
Mun, K.J. (2007) Development and tests of lightweight aggregate using sewage sludge for nonstructural concrete. Constr. Build. Mater. 21 [7], 1583-1588. https://doi.org/10.1016/j.conbuildmat.2005.09.009
Jerman, M.; Keppert, M.; Výborný, J.; Černý, R. (2013) Hygric, thermal and durability properties of autoclaved aerated concrete. Constr. Build. Mater. 41, 352-359. https://doi.org/10.1016/j.conbuildmat.2012.12.036
Collet, F.; Pretot, S. (2014) Thermal conductivity of hemp concretes: Variation with formulation, density and water content. Constr. Build. Mater. 65, 612-619. https://doi.org/10.1016/j.conbuildmat.2014.05.039
Chabannes, M.; Nozahic, V.; Amziane, S. (2015) Design and multi-physical properties of a new insulating concrete using sunflower stem aggregates and eco-friendly binders. Mater. Struct. 48, 1815-1829. https://doi.org/10.1617/s11527-014-0276-9
Koçyigit, F.; Kavak Akpinar, E.; Biçer, Y. (2016) Experimental and theoretical study for the determination of thermal conductivity of porous building material made with pumice and tragacanth. J. Adhes. Sci. Technol. 30 [21], 2357-2371. https://doi.org/10.1080/01694243.2016.1182832
Seng, B.; Magniont, C.; Lorente, S. (2019) Characterization of a precast hemp concrete. Part I: Physical and thermal properties. J. Build. Eng. 24, 100540. https://doi.org/10.1016/j.jobe.2018.07.016
Shafigh, P.; Asadi, I.; Akhiani, A.R.; Mahyuddin, N.B.; Hashemi, M. (2020) Thermal properties of cement mortar with different mix proportions. Mater. Construcc. 70 [339], e224. https://doi.org/10.3989/mc.2020.09219
de Oliveira, K.A.; Oliveira, C.A.B.; Molina, J.C. (2021) Lightweight recycled gypsum with residues of expanded polystyrene and cellulose fiber to improve thermal properties of gypsum. Mater. Construcc. 71 [341], e242. https://doi.org/10.3989/mc.2021.07520
Barbero-Barrera, M.M.; Flores-Medina, N.; Moreno-Fernández, E. (2019) Thermal, physical and mechanical characterization of volcanic tuff masonries for the restoration of historic buildings. Mater. Construcc. 69 [333], e179. https://doi.org/10.3989/mc.2019.12917
Stoleriu, S.; Vlasceanu, I.N.; Dima, C.; Badanoiu, A.I.; Voicu, G (2019) Alkali activated materials based on glass waste and slag for theral and acoustic insulation. Mater. Construcc. 69 [335], e194. https://doi.org/10.3989/mc.2019.08518
Abramowitz, M.; Stegun, I.A. (1972) Handbook of mathematical functions, 10th ed. National Bureau of Standards. Washington, D.C. (1972) Retrieved from https://www.pdmi.ras.ru/~lowdimma/BSD/abramowitz_and_stegun.pdf.
Kluitenberg, G.J.; Bristow, K.L.; Das, B.S. (1995) Error analysis of heat pulse method for measuring soil heat capacity, diffusivity, and conductivity. Soil Sci. Soc. Am. J. 59 [3], 719-726. https://doi.org/10.2136/sssaj1995.03615995005900030013x
Demidenko, E. (1987) Mixed models. John Wiley & Sons, Inc., Hoboken, NJ, USA (1987). https://doi.org/10.1002/9781118651537 PMid:3423936
Lindsey, J.K. (1993) Models for repeated measurements. Oxford Statistical Science Series, Oxford University Press, New York (1993).
McCulloch; C.E.; Searle, S.R. (2001) Generalized, Linear; Mixed Models, 45. (2001). https://doi.org/10.1002/9780470057339.vag009
Saphiro, S.S.; Wilk, M.B. (1965) An analysis of variance test for normality (complete samples). Biometrika. 52 [3-4], 591-611. https://doi.org/10.1093/biomet/52.3-4.591
Wilk, M.B.; Gnanadesikan, R. (1968) Probability plotting methods for the analysis of data. Biometrika. 55 [1], 1-17. https://doi.org/10.1093/biomet/55.1.1 PMid:5661047
Tukey, J.W. (1977) Exploratory data analysis. Addison-Wesley Pub. Co., Reading, Mass. (1977).
IBM Knowledge Center - Default tests of model effects (generalized linear models algorithms)
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read here the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.